APPENDIX C SUMMARY OF COMPOUNDS DETECTED IN SEDIMENT AND SURFACE WATER SAMPLES Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | CSD01 | CSUUS | CSOO3 | CSOOA | 2005 | 90000 | |---|----------------|--|--|--|--|--| | Sample ID: | Ö | CR-001-SD | CR-004-SD | CR-005-SD | CR-006-SD | CR-007-SD | | Sample Date: | | 05/14/2001 | 05/15/2001 | 05/17/2001 | 05/17/2001 | 05/17/2001 | | Constituent Depth (feet): | : 0 in to 3 in | 0 in to N/A | 0 in to 4 in | | Semi-Volatile Organic Compounds (ug/kg) | (| | - | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | 4.2 U | 4.1 U | 4.5 U | 5.4 U | 5.4 U | 3.9 U | | 4,4'-DDT (p,p'-DDT) | 4.2 U | 4.10 | 4.5 U | 5.4 U | 5.4 U | 3.9 U | | Alpha-chlordane | 2.2 U | 2.10 | 2.3 U | 2.8U | 2.8 U | 2.0 U | | Beta-BHC | 2.2 U | 2.10 | 2.3 U | 2.8 U | 2.8 U | 2.0 U | | Endrin | 4.2 U | 4.10 | 4.5 U | 5.4 U | 5.4 U | 3.9 U | | Endrin Aldehyde | 4.2 U | 4.10 | 4.5 U | 5.4 U | 5.4 U | 3.9 U | | Methoxychlor | 22 U | 210 | 23 U | 28 U | 28 U | 20 U | | PCB-1254 (Aroclor 1254) | 45 N | 11 30 | 45 U | 54 U | 54 U | 39 U | | PCB-1260 (Aroclor 1260) | 45 U | 5.9 JQ | 45 U | 54 U | 54 U | 39 U | | Inorganics (Total) (mg/kg) | | THE COLUMN TWO THE PERSONNEL PROPERTY OF THE COLUMN TWO COLUMNS IN | man man tagan da tita tagan da tagan da tagan da man man da tagan da da man da man da man da man da man da man | tion i territorischen i titter de territorische de territorischen de territorischen destination destinations destinations de territorischen destinations destinations de territorischen de
territorischen destinations de territorischen de territorischen destinations de territorischen territorische de territorischen de territorischen de territorische te | A CHARLES ON THE TAXABLE CONTRACTOR ONLY TO ANY THE CHARLES OF THE CONTRACTOR | AND THE COMMERCE AND ADDRESS OF THE COMMERCE AND COME | | Aluminum | 11300 | 6270 | 8730 | 13700 | 12100 | 4430 | | Antimony | 1.3 BJL | 0.74 UJK | 0.81 BJL | 1.5BJL | 1.6 BJL | 0.76 UJK | | Arsenic | . 6.7 | 4.5 U | 4.0 U | U.7.7 | 8.10 | 2.2 BU | | Barlum | 136 | 79.6 | 113 | 230 | 269 | 42.2B | | Beryllium | 0.66 B | 0.45B | 0.71B | 0.69B | 0.63B | 0.218 | | Cadmium | 0.08 U | 0.62B | 0.08 U | 3.6 | 4.0 | 0.12B | | Calcium | 7150 | 3090 | 2260 | 5970 | 7670 | 4420 | | Chromium | 16.4 | 7.7 | 8.8 | 30.1 | 29.8 | 8.8 | | Cobalt | 8.48 | 5.2B | 7.2B | 8.58 | 8.18 | 3.3B | | Copper | 17.3 JL | 9.8 JL | 11.1 JL | 48.5 JL | 41.6 JL | 10.4 JL | | Iron | 22900 | 16700 | 23000 | 23400 | 22300 | 8630 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS001 | CS002 | CS003 | CS004 | CS005 | CS006 | |------------------------------|---------------|--------------|-------------|--------------|--------------|--------------|--------------| | | Sample ID: | CR-003-SD | CR-001-SD | CR-004-SD | CR-005-SD | CR-006-SD | CR-007-SD | | | Sample Date: | 05/14/2001 | 05/14/2001 | 05/15/2001 | 05/17/2001 | 05/17/2001 | 05/17/2001 | | Constituent | Depth (feet): | 0 in to 3 in | 0 in to N/A | 0 in to 4 in | | Lead | | 11.4 | 22.3 | 6.1 | 219 | 238 | 6.2 | | Magnesium | | 6540 | 3460 | 4340 | 0669 | 7720 | 3140 | | Manganese | | 475 | 434 | 387 | 719 | 533 | 181 | | Nickel | | 15.6 | 8.0B | 8.5B | 24.6 | 24.1 | 89'6
8 | | Potassium | - | 2470 JL | 1250 JL | 1840 JL | 2570 JL | 2230 JL | 763 BJL | | Selenium | | 0.87 U | 0.84 U | 0.91 U | 1.3 U | 1.2 U | U.87 U | | Silver | | 1.2B | 0.80 B | 1.08 | 1.7B | 1.68 | 0.48B | | Sodium | | 259 B | 184B | 532 B | 345B | 359 B | 1978 | | Thallium | | 1.0 U | 0.97 U | 1.0 U | 1.5 U | 1.4 U | ∩ 66°0 | | Total Mercury | · · | U.70.0 | 0.06 U | 0.06 U | 0.66 | 0.49 | 0.06 U | | Vanadium | · | 36.1 | 30.0 | 51.3 | 36.9 | 36.2 | 17.3 | | Zinc | | 6.77 | 149 | 54.3 | 523 | 009 | 36.8 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (6 | 2150 | 8830 | 1000 U | 8060 | 8900 | 1420 | | Grain Size (%) | | | | | | | | | Percent Gravel | | 5< | 0 | 0 | 0 | 0 | 5 < | | Percent Sand | | 30 | 30 | 0 | 0 | 0 | < 06 | | Percent Silt | | 30 | 40 | 20 | 09 | 09 | > Q | | Percent Clay | | 35 | 30 | 30 | 40 | 40 | 0 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | | CS007 | CS008 | CS009 | CS010 | CS011 | CS012 | |---|--|----------|--------------|---|--|---------------|--|--| | | Sample ID: | | CR-008-SD | CR-009-SD | CR-010-SD | CR-011-SD | CR-012-SD | CR-013-SD | | | Sample Date: | | 05/17/2001 | 05/17/2001 | 05/17/2001 | 05/17/2001 | 05/17/2001 | 05/18/2001 | | Constituent | Depth (feet): | | 0 in to 2 in | 0 in to 4 in | 0 in to 7 in | 0 in to 0.5in | 0 in to 2 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | ounds (ug/kg) | | | | | | | | | Benzyl Butyl Phthalate
Bis(2-ethylhexyl) Phthalate | | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | 4.9 U | 5.0 U | 3.6U | 3.6U | 6.2 U | 6.2 U | | 4,4'-DDT (p,p'-DDT) | - | | 4.9 U | 5.0 U | 3.6 U | 3.6 U | 6.2 U | 6.2 U | | Alpha-chlordane | | | 2.5 U | 2.6 U | 1.90 | 1.8U | 3.2 U | 3.2 U | | Beta-BHC | | | 2.5 U | 2.6 U | 1.9 U | 1.8U | 3.2 U | 3.2 U | | Endrin | | | 4.9 U | 5.0 U | 3.6 U
| 3.6 U | 6.2 U | 6.2 U | | Endrin Aldehyde | | | 4.9 U | 5.0 U | 3.6 U | 3.6 U | 6.2 U | 6.2 U | | Methoxychlor | | | 25 U | 26 U | 19 U | 18U | 32 U | 32 U | | PCB-1254 (Aroclor 1254) | | | 490 | 20 U | 36 U | 36 U | 62 U | 38 JQ | | PCB-1260 (Aroclor 1260) | | | 49 U | 50 U | 36 U | 36U | 0.29 | 17 JQ | | Inorganics (Total) (mg/kg) | WARRACT TO THE PARTY OF PAR | | | telin (un esta) manuscamanamanium van un un material en | man is the state of two managers (see). I have summer surject a second of a constitution of the state the | | anamana and and anamana and anamana and anamana and anamana anamana and anamana anamana and anamana and anaman | terrimane material de estados entre estados de estados entre estados entre entre estados entre entre estados entre | | Aluminum | | | 4700 | 8240 | 7440 | 21200 | 14300 | 14300 | | Antimony | | | 0.85 UJK | 0.97 BJL | 0.65 UJK | 0.63 UJK | 3.6 BJL | 3.3 BJL | | Arsenic | | | 4.0 U | 5.1 U | 6.6 | 5.0 | 13.7 | 14.9 | | Barium | | | 57.4 | 105 | 61.1 | 227 | 512 | 596 | | Beryllium | | | 0.24B | 0.42B | 0.29B | 0.84B | 0.77 B | 0.78B | | Cadmium | | | 0.33 B | 0.73B | 0.25B | 4.4 | 8.1 | 4.0 | | Calcium | | | 2510 | 13200 | 3350 | 4920 | 14100 | 15900 | | Chromium | | | 15.7 | 23.3 | 20.4 | 14.0 | 35.7 | 35.9 | | Cobalt | | <u> </u> | 3.6B | 6.9B | 6.7B | 5.8B | 9.4B | 9.4B | | Copper | | | 11.8 JL | 22.5 JL | 21.9 JL | 33.9 JL | 91.7 JL | 86.8 JL | | Iron | | | 14400 | 16600 | 16500 | 14300 | 28300 | 29600 | | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | . CS007 | CS008 | CS009 | CS010 | CS011 | CS012 | |------------------------------|---------------|--------------|--------------|--------------|---------------|--------------|------------------| | | Sample ID: | CR-008-SD | CR-009-SD | CR-010-SD | CR-011-SD | CR-012-SD | CR-013-SD | | | Sample Date: | 05/17/2001 | 05/17/2001 | 05/17/2001 | 05/17/2001 | 05/17/2001 | 05/18/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 in to 4 in | 0 in to 7 in | 0 in to 0.5in | 0 in to 2 in | 0 in to 3 in | | Lead | | 21.5 | 24.4 | 16.7 | 86.6 | 464 | 535 | | Magnesium | , | 2760 | 5990 | 4860 | 3220 | 11200 | 12400 | | Manganese | | 267 | 376 | 250 | 347 | 808 | 869 | | Nickel | | 10.5B | 21.0 | 21.0 | 14.4 | 27.0 | 27.4 | | Potassium | | 672 BJL | 1770 JL | 1070 BJL | 1400 JL | 2520 JL | 2500 JL | | Selenium | | 0.96.0 | 1.10 | 0.74 U | 0.72 U | 1.5 U | 1.4 U | | Silver | | 0.71B | 0.94B | 0.85B | 0.76B | 2.78 | 2.7B | | Sodium | | 200 B | 289 B | 231B | 287 B | 406 B | 429 B | | Thallium | - | 1.10 | 1.3 U | 0.85 U | 0.82 U | 1.7 U | 171 | | Total Mercury | | U 20.0 | 0.08 U | 0.05 U | 0.14 | 1.7 | 26.0 | | Vanadium | | 27.7 | 32.0 | 27.9 | 26.7 | 39.9 | 40.6 | | Zinc | | 77.9 | 0.66 | 6.06 | 230 | 1060 | 1210 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (| 2040 | 9250 | 1000 U | 29400 | 17200 | 13400 | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 0 | 0 | 0 | 0 | 0 | | Percent Sand | | 65 | 09 | 06 | .0 | 0 |) ¹ 0 | | Percent Silt | | 15 | 30 | ស | 09 | 09 | 09 | | Percent Clay | | 20 | 10 | 2 | 40 | 40 | 40 | | | | | | | | 1. | , | SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | CS013 | CS014 | CS015 | CS016 | CS017 | CS017 | |---|--------------|--|--|--|---
---| | Sample ID: | CR-014-SD | CR-015-SD | CR-016-SD | CR-017-SD | CR-018-SD | CR-066-SD | | Sample Date: | : 05/18/2001 | 05/18/2001 | 05/18/2001 | 05/18/2001 | 05/18/2001 | 05/18/2001 | | Constituent Depth (feet): | 0 in to 4 in | 0 in to 4 in | 0 in to 8 in | 0 in to 1 in | 0 in to 6 in | 18 in to 24 in | | Semi-Volatile Organic Compounds (ug/kg) | (| | | | | | | Benzyl Butyl Phthalate
Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | 4.1 U | 7.2 U | 3.8 U | 3.5 U | 4.2 U | 4.10 | | 4,4'-DDT (p,p'-DDT) | 4.1U | 7.2 U | 3.8 U | 3.5 U | 4.2 U | 4.10 | | Alpha-chiordane | 2.1 U | 3.7 U | 2.0 U | 1.8 U | 2.2 U | 2.10 | | Beta-BHC | 2.1 U | 3.7 U | 2.0 U | 1.8 U | 2.2 U | 2.10 | | Endrin | 4.10 | 7.2 U | 3.8 U | 3.5 U | 4.2 U | 4.10 | | Endrin Aldehyde | 4.1 U | 7.2 U | 3.8 U | 3.5 U | 4.2 U | 4.1 U | | Methoxychlor | 210 | 37.0 | 20 U | 180 | 22 U | 21.0 | | PCB-1254 (Araclor 1254) | 41 U | 72 U | 380 | 35 U | 45 N | 410 | | PCB-1260 (Aroclor 1260) | 41 U | 72 U | 380 | 35 U | 45 U | 410 | | Inorganics (Total) (mg/kg) | | THE LANGE WAS A STREET OF THE PARTY P | to the control temperature for the deviation of the control | er energy management of the second se | en de la company comp | A DESIGNATION OF THE PROPERTY | | Aluminum | 12800 | 15400 | 9120 | 13600 | 9540 | 15600 | | Antimony | 3.2 BJL | 4.1BJL | 1.5BJL | 1.5BJL | 2.4 BJL | 0.72 UJK | | Arsenic | 19.0 | 12.3 | 6.2 | 8.5 | 13.1 | 2.8 | | Barium | 755 | 468 | 229 | 261 | 1030 | 175 | | Beryllium | 0.64B | 0.83B | 0.46B | 0.718 | 0.53B | 0.55B | | Cadmium | 11.1 | 7.5 | 3.4 | 3.8 | 8.6 | 0.43B | | Calcium | 27000 | 12100 | 7040 | 7150 | 34900 | 5560 | | Chromium | 25.9 | 38.0 | 21.1 | 28.6 | 25.2 | 9.6 | | Cobalt | 7,4B | 10B | 5.9 B | 8.7 B | 6.58 | 4.0B | | Copper | 73.4 JL | 111JL | 49.2 JL | 73.0 JL | 97.7 JL | 15.6 JL | | Iron | 26800 | 29400 | 16800 | 23800 | 25900 | 11500 | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 5 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station IU: | CS013 | CS014 | CS015 | CS016 | CS017 | CS017 | |------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|----------------| | | Sample ID: | CR-014-SD | CR-015-SD | CR-016-SD | CR-017-SD | CR-018-SD | CR-066-SD | | | Sample Date: | 05/18/2001 | 05/18/2001 | 05/18/2001 | 05/18/2001 | 05/18/2001 | 05/18/2001 | | Constituent | Depth (feet): | 0 in to 4 in | 0 in to 4 in | 0 in to 8 in | 0 in to 1 in | 0 in to 6 in | 18 in to 24 in | | Lead | | 841 | 440 | 190 | 162 | 439 | 26.8 | | Magnesium | | 18100 | 10300 | 6130 | 7240 | 21400 | 2970 | | Manganese | | 515 | 610 | 294 | 572 | 420 | 315 | | Nickel | | 21.9 | 28.5 | 16.5 | 24.0 | 22.7 | 9.2B | | Potassium | | 1970 JL | 2680 JL | 1630 JL | 2290 JL | 1590 JL | 1060 B | | Selenium | | 0.83 U | 1.7 U | 0.76 U | 0.84B | 0.86 U | 0.82 U | | Silver | | 1.9B | 2.9B | 1.4B | 1.78 | 1.8B | 0.32 B | | Sodium | | 301B | 490 B | 249B | 248B | 276B | 381 B | | Thallium | | 0.95 U | 1.9 U | 0.87 U | 0.80 U | 0.98 U | 0.941) | | Total Mercury | | 1.6 | 1.0 | 0.54 | 0.31 | 0.93 | 0.06 U | | Vanadium | | 38.5 | 42.4 | 25.8 | 37.2 | 33.9 | 19.2 | | Zinc | | 1460 | 1000 | 470 | 462 | 1180 | 84.2 | | Conventional Parameters | ø | - | | | | | | | Total Organic Carbon (mg/kg) | 'kg) | 11900 | 22600 | 8630 | 23100 | 16600 | 10400 | | Grain Size (%) | | | | | | | | | Percent Gravel | | 5< | 0 | 0 | 0 | 0 | 10 | | Percent Sand | | ¥ | | 50 | 'n.
∨ | 20 | 20 | | Percent Silt | | 35 | 40 | 40 | 40 | 20 | 40 | | Percent Clay | | 09 | 09 | 40 | 55 | 30 | 30 | 12/13/2001 Page 6 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CSD18 | Ce010 | 00000 | 1000 | 00000 | 0000 | |---|---------------|--|--|--------------
--|--------------|---------------| | | | | | 03050 | C3021 | 77000 | C2023 | | | Sample ID: | CK-019-SD | CR-020-SD | CR-023-SD | CR-022-SD | CR-024-SD | CR-025-SD | | | Sample Date: | 05/19/2001 | 05/19/2001 | 05/19/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | | Constituent | Depth (feet): | 0 in to 6.5in | 0 in to 5 in | 0 in to 4 in | 0 in to 4 in | 0 in to 4 in | 0 in to .25in | | Semi-Volatile Organic Compounds (ug/kg) | ounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 3.8 U | 7.8U | 8.2 U | 6.7 U | 8.7 U | 3.3 U | | 4,4'-DDT (p,p'-DDT) | - | 3.8 U | 7.8 U | 8.2 U | 6.7 U | 8.7 U | 3.3 U | | Alpha-chlordane | | 1.9 U | 4.0 U | 4.2 U | 3.5 U | 4.5 U | 1.7U | | Beta-BHC | | 1.9 U | 4.00 | 4.2 U | 3.5 U | 4.5U | 1.7U | | Endrin | | 3.8 U | 7.8 U | 8.2 U | 6.7 U | 8.7 U | 3.3 U | | Endrin Aldehyde | | 3.8 U | 7.8 U | 8.2 U | 0.7 U | 8.7 U | 3.3 U | | Methoxychlor | | 19 U | 40 U | 42 U | 350 | 45 U | U 21 | | PCB-1254 (Aroclor 1254) | | 38 ∪ | U87 | 82 U | 0 L9 | 87 U | 33 U | | PCB-1260 (Aroclor 1260) | - | 380 | 78U | 82 U | 67 U | 87 U | 33 U | | Inorganics (Total) (mg/kg) | | a e e contra la camenda pedestro e e e e e e deliberar anno man disente. | to the contract of contrac | | and the second control of | | | | Aluminum | | 8180 | 11900 | 0299 | 12800 | 11600 | 10400 | | Antimony | | 1.7 BJL | 2.1 BJL | 5.4 BJL | 3.6BJL | 3.4 BJL | 1.0 BJL | | Arsenic | | 7.8 | 4.5B | 6.8 | 9.5 | 10.3 | 4.2 | | Barium | - | 422 | 231 | 180 | 364 | 240 | 190 | | Beryllium | | 0.43B | 0.62B | 0.39B | 0.69B | 0.60 B | 0.63B | | Cadmium | | 4.9 | 1.48 | 1,8B | 6.5 | 5.9 | 1.6 | | Calcium | | 12400 | 9340 | 7630 | 8230 | 7740 | 5470 | | Chromium | | 18.9 | 20.4 | 17.0 | 33.1 | 30.4 | 25.7 | | Cobalt | | 5.4 B | 7.48 | 5.48 | 9.2B | 7.9B | 8.2B | | Copper | | 40.6 JL | 41.8 JL | 96.7 JL | 88.2 JL | 67.6 JL | 53.9 JL | | Iron | | 17400 | 20400 | 15500 | 25200 | 22400 | 18000 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS018 | CS019 | CS020 | CS021 | CS022 | CS023 | |------------------------------|---------------|---------------|--------------|--|--------------|--------------|---------------| | | Sample ID: | CR-019-SD | CR-020-SD | CR-023-SD | CR-022-SD | CR-024-SD | CR-025-SD | | | Sample Date: | 05/19/2001 | 05/19/2001 | 05/19/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | | Constituent | Depth (feet): | 0 in to 6.5in | 0 in to 5 in | 0 in to 4 in | 0 in to 4 in | 0 in to 4 in | 0 in to .25in | | Lead | | 232 | 64.9 | 72.7 | 441 | 282 | 93.8 | | Magnesium | | 8970 | 7000 | 5610 | 8200 | 7930 | 6150 | | Manganese | ****** | 337 | 392 | 303 | 673 | 392 | 392 | | Nickel | | 16.6 | 18.7B | 13.6B | 25.9 | 23.2 B | 23.0 | | Potassium | | 1490 | 2020 B | 1270 B | 2440 | 2280 B | 2390 | | Selenium | | U 77.0 | 1.9 U | 1.9 U | 1.5 U | 2.0 U | 0.68 U | | Silver | | 0.78B | 0.75B | 1.18 | 2.08 | 1.5B | 0.98 8 | | Sodium | | 242 B | 480 B | 426 B | 471B | 623 B | 186B | | Thallium | | 0.89 U | 2.2 U | 2.2 U | 1.8U | 2.3 U | 0.78 U | | Total Mercury | | 0.43 | 0.14 U | 0.13 U | 1.2 | 0.90 | 0.25 | | Vanadium | | 24.2 | 26.7 B | 20.2 B | 35.8 | 33.7 | 32.1 | | Zinc | | 581 | 250 | 455 | 901 | 617 | 280 | | Conventional Parameters | | | | APPLICATION AND THE PROPERTY OF O | | | | | Total Organic Carbon (mg/kg) | <u> </u> | 10700 | 21500 | 26400 | 12600 | 10200 | 15500 | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 0 | 0 | 0 | 0 | 0 | | Percent Sand | | 40 | ~ | 10 | <u>></u> | 0 | 20 | | Percent Silt | | 40 | . 09 | 20 | 09 | 09 | 40 | | Percent Clay | | 20 | 40 | 40 | 40 | 40 | 10 | | | | | | | | | | 12/13/2001 Page 8 of 60 Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | ID: CS024 | CS025 | CS026 | CS027 | CS028 | CS029 | |---|---------------------|--------------
--|--------------|--------------|--------------| | Sample ID: | ID: CR-062-SD | CR-026-SD | CR-029-SD | CR-027-SD | CR-028-SD | CR-030-SD | | Sample Date: | ite: 06/08/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | | Constituent Depth (feet): | et): 18 in to 24 in | 0 in to 3 in | 0 in to 3 in | 0 in to 4 in | 0 in to 2 in | 0 in to 2 in | | Semi-Volatile Organic Compounds (ug/kg) | kg) | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | 5.0 U | 7.8 U | 5.4 U | 5.5 U | 7.2 U | 3.4 U | | 4,4'-DDT (p,p'-DDT) | 5.0 U | 7.8 U | 5.4 U | 5.5 U | 7.2 U | 3.40 | | Alpha-chlordane | 2.6 U | 4.0 U | 2.8 U | 2.8 U | 3.7 U | 1.7.0 | | Beta-BHC | 2.6 U | 4.0 U | 2.8 U | 2.8U | 3.7 U | 1.7 U | | Endrin | 2.0 ∪ | 7.8 U | 5.4 U | 5.5 U | 7.2 U | 3,4 U | | Endrin Aldehyde | 5.0 U | 7.8 U | 5.4 U | 5.5 U | 7.2 U | 3.4 U | | Methoxychlor | 26U | 400 | 52 | 280 | 37 U | 17 U | | PCB-1254 (Aroclor 1254) | O 05 | 78 U | 54 U | 55 U | 72 U | 340 | | PCB-1260 (Aroclor 1260) | 20 C | 78 U | 54 U | 55 U | 72 U | 34 U | | Inorganics (Total) (mg/kg) | | | and the control of th | | | | | Aluminum | 6810 | 0366 | 8000 | 0606 | 12400 | 7150 | | Antimony | 1.6 BUJK | 4.9 BJL | 4.8 BJL | 1.3 BJL | 3.9 BJL | 1.9 BJL | | Arsenic | 5.8 | 10.6 | 9.5 | 3.48 | 9.7 | 7.0 | | Barlum | 147 | 505 | 375 | 113 | 370 | 342 | | Beryllium | 0.29B | 0.54 B | 0.44B | 0.58B | 0.67 B | 0.37B | | Cadmium | 0.10 U | 4.3 | 2.9 | 0.29B | 2.8 | 3.2 | | Calcium | 162000 | 21200 | 16600 | 4800 | 16100 | 11500 | | Chromium | 12.9 | 25.0 | 21.9 | 21.1 | 30.1 | 17.7 | | Cobalt | 4.7B | 7.9B | 7.7 B | 6.0B | 9.6B | 5.0B | | Copper | 18.1 JL | 120 JL | 118 JL | 25.0 JL | 114 JL | 65.7 JL | | Iron | 11700 | 27500 | 23000 | 16000 | 29000 | 15900 | | | • | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS024 | CS025 | CS026 | CS027 | CS028 | CS029 | |------------------------------|---------------|----------------|--------------|---|--------------|--------------|--------------| | | Sample ID: | CR-062-SD | CR-026-SD | CR-029-SD | CR-027-SD | CR-028-SD | CR-030-SD | | | Sample Date: | 06/08/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | 05/21/2001 | | Constituent | Depth (feet): | 18 in to 24 in | 0 in to 3 in | 0 in to 3 in | 0 in to 4 in | 0 in to 2 in | 0 in to 2 in | | Lead | | 6.7 JL | 211 | 159 | 21.3 | 149 | 208 | | Magnesium | | 2090 | 13800 | 11100 | 5190 | 11900 | 7940 | | Manganese | | 327 | 528 | 411 | 284 | 588 | 256 | | Nickel | | 14.3 | 21.4 | 18.0 | 16.2 | 24.8 | 14.1 | | Potassium | | 1330 B | 1960 B | 1560 B | 1380B | 2480 | 1250 | | Selenium | | 1.2 U | 1.8 U | 1.2 U | 1.3 U | 1.6 U | 0.681 | | Silver | | 0.32 BU | 2.0B | 1.8B | 0.52B | 178 | | | Sodium | | 337 BU | 483 B | 354 B | 385 B | 397 B | 2002 | | Thallium | | 1.3 U | 2.10 | 1.4 U | 1.5 U | 191 | 1820 | | Total Mercury | | 0.08 U | 0.49 | 0.20 | 0.09 U | 0.178 | 0.53 | | Vanadium | | 16.6B | 30.5 | 25.6 | 29.0 | 36.7 | 21.4 | | Zinc | | 42.3 | 855 | 940 | 104 | 787 | 600 | | Conventional Parameters | | | | *************************************** | - | | | | Total Organic Carbon (mg/kg) | (| 15800 | 24600 | 13700 | 18100 | 21200 | 11900 | | Grain Size (%) | | | | | | | | | Percent Gravel | | | 0 | 0 | 0 | 0 | C | | Percent Sand | | 45 | 25 | 35 | 35 | 25 | ۶ ۶ | | Percent Silt | | 45 | 40 | 40 | 40 | 40 | 40 | | Percent Clay | | 10< | 35 | 25 | 25 | 35 | 30 | | | | | | | = == | • |) | SDDDL1SD.DBF - CHSTdtFT.frx A blank cell indicates analysis was not performed or the result was rejected during analysis. 12/13/2001 Page 10 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS030 | CS031 | CS032 | CS033 | CS034 | CS035 | |---|--|---
--|--|--|--
--| | • | Sample ID: | CR-031-SD | CR-032-SD | CR-033-SD | CR-034-SD | CR-036-SD | CR-035-SD | | | Sample Date: | 05/21/2001 | 05/21/2001 | 05/22/2001 | 05/22/2001 | 05/22/2001 | 05/22/2001 | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 2 in | 0 in to 1 in | 0 in to 5 in | 0 in to 1 in | 0 in to .25in | | Semi-Volatile Organic Compounds (ug/kg) | pounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | And the second s | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 3.4 U | 5.2 U | 3.6U | 4.0U | 3.5 U | 3.4 U | | 4,4'-DDT (p,p'-DDT) | | 3.4 U | 5.2 U | 3.6 U | 4.00 | 3.50 | 3.40 | | Alpha-chlordane | | 1.8U | 2.7 U | 1.8U | 2.10 | 1.8 U | 1.7 U | | Beta-BHC | | 1.8U | 2.7 U | 1.8 U | 2.10 | 1.8 U | 1.7 U | | Endrin | | 3.4 U | 5.2 U | 3.6 U | 4.0 U | 3.5 U | 3.4 U | | Endrin Aldehyde | | 3.4 U | 5.2 U | 3.6 U | 4.0 U | 3.5 U | 3.4 U | | Methoxychlor | | 180 | 27 U | 18U | 210 | 180 | U 21 | | PCB-1254 (Aroclor 1254) | | 34 U | .52 U | 360 | 40 U | 35 U | 34 U | | PCB-1260 (Aroclor 1260) | | 340 | 52 U | 360 | 40 U | 35 U | 34 U | | Inorganics (Total) (mg/kg) | the speciment of sp | THE STREET THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND THE PROPERTY AND THE PROPERTY AND ADDRESS OF THE | A REPORT TO THE PARTY AND ADDRESS OF THE PARTY AND A P | to the first the transfer of any membrane transfer where the first state of the second | ANNO TERMINE DE LE MENTE EN LA MANTE DE LA CARRESTA DEL CARRESTA DE LA CARRESTA DE LA CARRESTA DEL CARRESTA DE LA DEL CARRESTA DE LA CARRESTA DE LA CARRESTA DE LA CARRESTA DE LA CARRESTA DEL CARRESTA DE LA DEL CARRESTA DE LA CAR | COMMENT OF THE STATE STA | METER STEEN AND ANAMASSACIONES (SEE SEE SE SEE SE SECOND S | | Aluminum | | 11200 | 6940 | 9410 | 9240 | 8720 | 8540 | | Antimony | | 4.7 BJL | 21.5 JL | 4.7 BJL | 7.0 BJL | 5.7 BJL | 2.2 BJL | | Arsenic | - | 11.1 | 11.5 | 8.7 | 13.0 | 10.7 | 7.9 | | Barium | | 624 | 533 | 295 | 618 | 391 | 255 | | Beryllium | | 0.62 B | 0.38B | 0.54B | 0.518 | 0.49B | 0.45B | | Cadmium | | 7.2 | 4.3 | 3.5 | 6.9 | 3.6 | 2.3 | | Calcium | 1 | 20500 | 26300 | 15400 | 26100 | 19600 | 10800 | | Chromium | | 30.6 | 29.9 | 26.4 | 29.4 | 25.8 | 23.4 | | Cobalt | | 9.0B | 10.7B | 8.6B | 9.0B | 8.68 | 7.3B | | Copper | | 205 JL | 387 JL | 150 JL | 251 JL | 156 JL | 76.8 JL | | Iron | | 26800 | 36300 | 24700 | 28900 | 25500 | 19800 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | O in to 0 in to 0 in to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Station ID: | CS030 | CS031 | CS032 | CS033 | CS034 | CS035 | |--|-----------------------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------| | Sample Date: 05/21/2001 05/22 | | Sample ID: | CR-031-SD | CR-032-SD | CR-033-SD | CR-034-SD | CR-036-SD | CR-035-SD | | Depth (feet): 0 in to 1 in 0 in to 2 in 0 in to 2 in 0 in to 5 | | Sample Date: | 05/21/2001 | 05/21/2001 | 05/22/2001 | 05/22/2001 | 05/22/2001 | 05/22/2001 | | 14200 11800 10200 15300 11800 10200 15300 11800 10200 15300 11800 10200 15300 11800 10200 15300 11820 11900 1620 1120 1120 1120 1120 1120 1120 1120 1120 1120 11200 | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 2 in | 0 in to 1 in | 0 in to 5 in | 0 in to 1 in | 0 in to .25in | | 14200 11800 10200 15300 15300 15300 15300 15300 1500 1500 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000
150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 150000 1500000 1500000 1500000 1500000 1500000 1500000 1500000 1500000 1500000 1500000 1500000 150000000000 | Lead | | 369 | 256 | 165 | 392 | 190 | 112 | | 388 661 481 435 23.1 16.0 21.1 20.9 1820 1440B 1900 1620 1.1 1.6B 0.97B 1.2 3.1 3.4 2.1B 3.2 258B 374B 266B 269B 0.80 U 1.6B 0.84 U 0.92 U 1.1 0.40 0.19 0.73 33.1 23.6 29.4 30.2 1250 2560 1030 1660 33.1 27800 9170 29300 20900 1 40 0 0 0 0 0 0 30 70 30-40 40 40 40 40 40 30 30 45 45 45 45 45 45 45 45 46 45 46 46 46 46 46 46 46 46 46 46 46 46 | Magnesium | | 14200 | 11800 | 10200 | 15300 | 12800 | 8570 | | 33.1 16.0 21.1 20.9 1820 1440B 1900 1620 1.1 1.6B 0.97B 1.2 3.1 3.4 2.1B 3.2 258B 374B 266B 269B 0.80U 1.6B 0.84U 0.92U 1.1 0.40 0.19 0.73 33.1 23.6 29.4 30.2 1250 2560 1030 1660 33.1 2560 1030 1660 40 27 60 60 40 27 60 45 30 3 10 15 | Manganese | | 388 | 661 | 481 | 435 | 545 | 467 | | 1820 1440B 1900 1620 1.1 1.6B 0.97B 1.2 1. | Nickel | ľ | 23.1 | 16.0 | 21.1 | 20.9 | 19.8 | 19.1 | | 41.1 1.6B 0.97B 1.2 3.1 3.4 2.1B 3.2 258B 374B 266B 269B 0.80U 1.6B 0.84U 0.92U 1.1 0.40 0.19 0.73 33.1 23.6 29.4 30.2 1250 2560 1030 1660 30 27800 9170 29300 20900 1 40 0 0 0 0 0 0 40 27 60 45 45 45 30 30 3 10 15 | Potassium | | 1820 | 1440B | 1900 | 1620 | 1760 | 1610 | | 3.1 3.4 2.1B 3.2 258 B 374 B 266 B 269 B 0.80 U 1.6 B 0.84 U 0.92 U 1.1 0.40 0.19 0.73 33.1 23.6 29.4 30.2 1250 2560 1030 1660 9) 27800 9170 29300 20900 1 9) 27800 0 0 0 0 0 0 90 70 30-40 40 40 45 46 <td>Selenium</td> <td><u></u></td> <td>1.</td> <td>1.68</td> <td>0.97 B</td> <td>1.2</td> <td>0.69.0</td> <td>0.68 U</td> | Selenium | <u></u> | 1. | 1.68 | 0.97 B | 1.2 | 0.69.0 | 0.68 U | | 258B 374B 266B 269B 0.80 U 1.6B 0.84 U 0.92 U 1.1 0.40 0.19 0.73 33.1 23.6 29.4 30.2 1250 2560 1030 1660 3) 27800 9170 29300 20900 3) 70 30-40 40 40 27 60 45 30 30 30 45 30 30 30 45 | Silver | | 3.1 | 3.4 | 2.18 | 3.2 | 2.2 | 128 | | 9.80 U 1.6 B 0.84 U 0.92 U 1.1 0.40 0.19 0.73 33.1 23.6 29.4 30.2 1250 2560 1030 1660 1250 2560 1030 1660 9) 27800 9170 29300 20900 9 0 0 0 0 9 70 30-40 40 40 27 60 45 30 30 3 10 45 30 3 3 10 15 | Sodium | | 258 B | 374B | 266 B | 269 B | 207 B | 237B | | 33.1 23.6 29.4 30.2 1250 2560 1030 1660 9) 27800 9170 29300 20900 9) 0 0 0 30 70 30-40 40 40 27 60 45 30 30 30 16 30 30 30 45 30 30 30 45 30 30 30 45 30 30 30 45 | Thallium | | 0.80 U | 1.6B | 0.84 U | 0.92 U | U 62:0 | U87.0 | | 33.1 23.6 29.4 30.2 1250 2560 1030 1660 9) 27800 9170 29300 20900 9 0 0 0 0 0 0 0 0 0 30 70 30-40 44 40 27 60 45 30 3 10 15 | Total Mercury | | 1.1 | 0.40 | 0.19 | 0.73 | 0.32 | 0.16 | | g) 1250 2560 1030 1660 g) 27800 9170 29300 20900 g) 0 0 0 0 30 70 30-40 40 40 40 45 30 30 30 45 30 30 30 45 40 45 45 30 30 30 45 45 45 45 46 45 45 47 45 45 48 40 45 49 45 45 40 45 45 40 45 45 40 45 45 40 45 45 40 45 45 40 45 45 41 45 45 41 45 45 42 45 43 | Vanadium | | 33.1 | 23.6 | 29.4 | 30.2 | 28.6 | 28.3 | | 9) 27800 9170 29300 20900 0 0 0 0 30 70 30-40 40 40 27 60 45 30 3 10 15 | Zinc | | 1250 | 2560 | 1030 | 1660 | 1100 | 592 | | arbon (mg/kg) 27800 9170 29300 20900 I 0 0 0 0 30 70 30-40 40 40 27 60 45 30 3 10 15 | Conventional Parameters | | | - | | | | | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Total Organic Carbon (mg/kς | (1 | 27800 | 9170 | 29300 | 20900 | 18700 | 15800 | | 30 0 0 0
30 70 30-40 40
40 27 60 45
30 3 10< 15 | Grain Size (%) | | | | | | | | | 30 70 30-40 40 40 27 60 45 30 3 10 15 | Percent Gravel | | 0 | 0 | 0 | 0 | 0 | 5 | | 40 27 60 45 30 3 10 15 | Percent Sand | | 30 | 02 | 30-40 | 40 | 30 | 30 | | 30 3 10< 15 | Percent Silt | | 40 | 27 | 09 | 45 | 40 | 55 | | | Percent Clay | | 30 | 3 | 10 < | 15 | 25 | 10 | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 12 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | C8036 | CSOS | CS038 | CS039 | CS040 | CS041 | |---|---|--|--|--------------|--|--|--------------| | | Sample ID: | CR-037-SD | CR-038-SD | CR-039-SD | CR-040-SD | CR-041-SD | CR-042-SD | | | Sample Date: | 05/22/2001 | 05/22/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | | Constituent | Depth (feet): | 0 in
to 2 in | 0 in to 2 in | 0 in to 3 in | 0 in to 4 in | 0 in to 2 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | pounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate
Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 3.4 U | 3.4 U | 3.4 U | 3.5 U | 3.4 U | 3.3 U | | 4,4'-DDT (p,p'-DDT) | | 3.40 | 3.40 | 3.4 U | 3.50 | 3.4 U | 3.3 U | | Aipha-chiordane | | 1.8 U | 1.7 U | 1.7 U | 1.8 U | 1.7 U | 1.7 U | | Beta-BHC | | 1.8 U | U.7.1 | 1.7 U | 1.8U | 1.7 U | 1.7 U | | Endrin | | 3.4 U | 3.40 | 3.4 U | 3.5 U | 3.4 U | 3.3 U | | Endrin Aldehyde | | 3.4 U | 3.4 U | 3.4 U | 3.5 U | 3.4 U | 3.3 U | | Methoxychlor | | 180 | 17.0 | 17.0 | 18U | U.21 | U 17 U | | PCB-1254 (Aroclor 1254) | | 340 | 340 | 340 | 35 U | 34 U | 33.0 | | PCB-1260 (Aroclor 1260) | | 34 U | 34 U | 34 U | 35 U | 34 U | 33 U | | Inorganics (Total) (mg/kg) | a kan dara e ta saje da | ALL LANGE ON ANY AUTOCOMPANY OF PROPERTY AND ANY | en experienza de magnetamenta esta de menero em terro em terro en esta en esta en esta en esta en esta en esta | | The same special design of the same | to desire the second se | | | Aluminum | | 8790 | 18900 | 12400 JL | 4950 JL | 6520 JL | 6550 JL | | Antimony | | 10.8 BJL | 17.2 JL | 10.4 BJL | 3.4 BUJ | 19.2 JL | 17.2 JL | | Arsenic | | 10.4 | 26.9 | 17.3 JH | 9.6 JH | 9.1 JH | 8.7 JH | | Barium | | 438 | 1070 | 603 JK | 768 JK | 452 JK | 495 JK | | Beryllium | | 0.39B | 0.74B | 0.53B | 0.28B | 0.34B | 0.32B | | Cadmium | - | 2.8 | 2.8 | 2.1 | 5.3 | 1.9 | 2.1 | | Calcium | | 22300 | 49600 | 28900 JL | 46900 JL | 24700 JL | 28200 JL | | Chromium | | 28.1 | 59.1 | 35.1 JL | 12.5 JL | 27.1 JL | 32.8 JL | | Cobalt | | 10.6 | 22.3 | 15.1 JL | 4.1 BJL | 12.0 JL | 13.7 JL | | Copper | | 309 JL | 1460 JL | 823 | 102 | 362 | 451 | | Iron | | 42300 | 176000 | 109000 JL | 25000 JL | 37600 JL | 48200 JL | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS036 | CS037 | CS038 | CS039 | CS040 | CS041 | |------------------------------|---------------|--------------|--|--------------|--------------|--------------|--------------| | | Sample ID: | CR-037-SD | CR-038-SD | CR-039-SD | CR-040-SD | CR-041-SD | CR-042-SD | | | Sample Date: | 05/22/2001 | 05/22/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 in to 2 in | 0 in to 3 in | 0 in to 4 in | 0 in to 2 in | 0 in to 3 in | | Lead | | 500 | 1590 | 784 JL | 289 JL | 172 JL | 175 JL | | Magnesium | | 10300 | 7230 | 5020 JL | 25000 JL | 9750 JL | JF 0966 | | Manganese | | 946 | 3390 | 2090 JL | 442 JL | 743 JL | ∃F 806 | | Nickel | | 15.0 | 10.3 | 8.55 | 10.9 | 11.1 | 10.2 | | Potassium | | 1400 | 3620 | 2300 JL | 883 BJL | 1330 JL | 1260 JL | | Selenium | | 1.4 | 0.68 U | 4.2 | 0.82B | 1.8 | 2.1 | | Silver | | 2.1 | 4.0 | 5.9 | 0.63B | 2.1 | 2.2 | | Sodium | | 384B | 1310 | 723 B | 228 B | 377B | 475B | | Thallium | | 0.81B | 4.0 | 2.4 | 1.18 | 1.2B | 0.78 U | | Total Mercury | | 0.16 | 0.07B | 0.13 | 0.29 | 0.08 B | 0.07 B | | Vanadium | | 27.1 | 39.0 | 29.5 JL | 23.0 JL | 21.5 JL | 21.4 JL | | Zinc | | 3090 | 24900 | 13900 | 1990 | 2770 | 3760 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (6 | 9450 | 1380 | 1680 | 4830 | 5510 | 3460 | | Grain Size (%) | | | Transport of the state s | | | | | | Percent Gravel | | >1 | 5 | 15 | 0 | - | ,-
,- | | Percent Sand | | 09 | 09 | 55 | 65-70 | 74 | 06 | | Percent Silt | | 40 | 30 | 30 | 30 | 25 | 10 | | Percent Clay | | 1< | ro. | 0 | 5< | 0 | 1< | | | | | The state of s | | | | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 14 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS042 | | CS043 | CS044 | CS045 | CS046 | CS047 | |---|--|--|---
--------------|--|--|--|--| | | Sample ID: | CR-043-SD | O | CR-044-SD | CR-045-SD | CR-046-SD | CR-047-SD | CR-048-SD | | Ø | Sample Date: | 05/23/2001 | 0 | 05/23/2001 | 05/31/2001 | 05/31/2001 | 05/31/2001 | 05/31/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 | 0 in to 2 in | 0 in to 4 in | 0 in to 3 in | 0 in to 1 in | 0 in to 1 in | | Semi-Volatile Organic Compounds (ug/kg) | unds (ug/kg) | | | | | and the second s | | | | Benzyl Butyl Phthalate | | | | | | | | | | Pesticides/PCBs (ua/ka) | | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 3.3 U | | 3.40 | 3.3 U | 3.3 U | 3.6 U | 3.3 U | | 4,4'-DDT (p,p'-DDT) | | 3.3 U | | 3.40 | 3.3 U | 3.3 U | 3.6 U | 3.3 U | | Alpha-chlordane | | 1.7 U | | 1.7 U | 1.7 U | 1.7 U | 1.9 U | U.7.1 | | Beta-BHC | | 1.7 U | | 1.70 | 1.7 U | 1.7 U | 1.9U | 1.7 U | | Endrin | - | 3.3 U | | 3.4 U | 3.3 U | 3.3 U | 3.6 U | 3.3 U | | Endrin Aldehyde | - | 3.3 U | | 3.4 U | 3.3 U | 3.3∪ | 3.6 U | 3.3 U | | Methoxychior | | 17.0 | | 17 U | U.21 | U71 | 19.0 | U 7 I | | PCB-1254 (Aroclor 1254) | | 33 U | | 34 U | 33.0 | 33 U | 36∪ | 33.0 | | PCB-1260 (Aroclor 1260) | | 33 U | | 34 U | 33.U | 33 U | 36 U | 33 U | | Inorganics (Total) (mg/kg) | A MARKET COLLEGE CONTRACTOR OF THE | e de la membre establishe et acces par a semanare de la company co | | | a de transcribações estadores de la crista describações de companientes de la companiente de la companiente de | minimization of the state th | and the second s | a material we expense of the page process annual name and make a sometime to the | | Aluminum | | 9280 JL | | 15500 JL | 21100 | 4710 | 17400 | 17800 | | Antimony | | 20.7 JL | | 27.1 JL | 53.5 | 9:0B | 57.5 | 45.2 | | Arsenic | | 13.9 JH | | 20.3 JH | 25.5 | 7.6 | 30.3 | 21.6 | | Barium | | 632 JK | | 1140 JK | 2160 | 486 | 1970 | 1690 | | Beryllium | | 0.43B | | 0.69B | 0.99 B | 0.27 B | 0.86B | 0.77B | | Cadmium | • | 9: | | 1.6 | 0.06 U | 4.8 | U 20.0 | 0.19B | | Calcium | - | 26500 JL | | 46900 JL | 00669 | 54000 | 57600 | 66400 | | Chromium | | 44.8 JL | | 76.8 JL | 142 | 20.7 | 135 | 112 | | Cobalt | | 17.7 JL | | 35.2 JL | 29.0 | 8.4B | 73.5 | 47.3 | | Copper | | 720 | | 1550 | 2900 JL | 245 JL | 2520 JL | 2160 JL | | Iron | | 79700 JL | | 137000 JL | 239000 | 28000 | 176000 | 178000 | | | • | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS042 | CS043 | CS044 | CS045 | CS046 | CS047 | |------------------------------|---------------|--------------|--|--------------|--------------|--------------|--------------| | | Sample ID: | CR-043-SD | CR-044-SD | CR-045-SD | CR-046-SD | CR-047-SD | CR-048-SD | | | Sample Date: | 05/23/2001 | 05/23/2001 | 05/31/2001 | 05/31/2001 | 05/31/2001 | 05/31/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 in to 2 in | 0 in to 4 in | 0 in to 3 in | 0 in to 1 in | 0 in to 1 in | | Lead | | 446 JL | 1040 JL | 316 | 199 | 409 | 417 | | Magnesium | | 5520 JL | 5780 JL | 5770 JL | 26600 JL | 5040 JL | 10000 JL | | Manganese | | 1500 JL | 3060 JL | 4040 | 585 | 3680 | 3240 | | Nickel | | 9.6 | 12.2 | 17.0 | 10.4 | 15.6 | 14.4 | | Potassium | | 1740 JL | 3750 JL | 4300 | 888 B | 3580 | 3490 | | Selenium | | 3.2 | 4.5 | 0.68 UJK | 0.67 UJK | 1.4 JL | 30.68 UJK | | Silver | | 3.9 | 5.7 | 7.5 | 1.68 | 10.2 | 7.4 | | Sodium | | 666 B | 1660 | 2210 | 269 B | 2230 | 1610 | | Thallium | | 2.3 | 4.6 | 0.78 U | U 77.0 | 0.87 U | 0.78 U | | Total Mercury | | 0.13 | 0.06B | 0.05 U | 0.068 | 0.06 U | 0.05 U | | Vanadium | | 26.2 JL | 39.2 JL | 42.3 | 22.1 | 39.1 | 37.7 | | Zinc | | 8710 | 15000 | 20100 | 2430 | 17500 | 18200 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | kg) |
1950 | 1000 U | 1000 U | 5250 | 1210 | 2160 | | Grain Size (%) | | | The second secon | | | | | | Percent Gravel | | | 10 | 0 | _ | 5 | \ <u>\</u> | | Percent Sand | | 06 | 06 | 90-100 | 80 | 95 | 99-100 | | Percent Silt | | 10 | 0 | 10< | 20 < | 0 | 0 | | Percent Clay | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | 12/13/2001 Page 16 of 60 SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS048 | CS049 | CS050 | CS051 | CS052 | TS001 | |---|---|--------------|--------------|--|--------------|--------------|---| | | Sample ID: | CR-049-SD | CR-050-SD | CR-051-SD | CR-052-SD | CR-053-SD | TR-056-SD | | | Sample Date: | 05/31/2001 | 06/01/2001 | 06/01/2001 | 06/01/2001 | 06/01/2001 | 06/05/2001 | | Constituent | Depth (feet): | 0 in to 3 in | 0 in to 2 in | 0 in to 2 in | 0 in to 4 in | 0 in to 3 in | 0 in to 2 in | | Semi-Volatile Organic Compounds (ug/kg) | ounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | ٠ | | | - | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 3.3 U | 3.4 U | 3.9 U | 3.3 U | 3.8 U | | | 4,4'-DDT (p,p'-DDT) | | 3.3 U | 3.4 U | 3.9 U | 3.3 U | 3.8 U | | | Alpha-chlordane | | U.7.U | 1.8U | 2.0 U | 1.7 U | 1.9 U | | | Beta-BHC | | U.7.1 | 1.8U | 2.0 U | 1.7 U | 1.9 U | | | Endrin | | 3.3 U | 3.4 U | 3.9 U | 3.3 U | 3.8 U | | | Endrin Aldehyde | | 3.3 U | 3.4 U | 3.9 U | 3.3 U | 3.80 | | | Methoxychlor | | U 41 | 180 | 20 U | U 21 | 190 | | | PCB-1254 (Aroclor 1254) | | 33 U | 340 | 39 U | 33 U | 38 U | | | PCB-1260 (Aroclor 1260) | | 33 U | 34 U | 39 U | 33 U | 380 | | | Inorganics (Total) (mg/kg) | A THE RESIDENCE AND THE PROPERTY OF THE PROPERTY OF | | | AND THE COMMENT OF TH | | | The second control of | | Aluminum | | 18100 | 18700 | 8170 | 21100 | 11000 | 13600 | | Antimony | | 34.9 | 7.48 | 20.0 | 61.3 | 51.4 | 118 | | Arsenic | | 30.3 | 7.6 | 11.8 | 42.8 | 23.1 | 6.2 | | Barium | | 1660 | 681 | 763 | 2440 | 686 | 172 | | Beryllium | | 0.75B | 0.71B | 0.38 B | 1.0B | 0.57 B | 0.67 B | | Cadmium | | 0.06 U | 0.06 U | 2.4 | 0.06 U | U 20:0 | 0.52B | | Calcium | | 58600 | 46900 | 25300 | 72400 | 30800 | 5080 | | Chromium | | 113 | 64.0 | 30.2 | 165 | 72.0 | 24.8 | | Cobalt | | 33.8 | 15.0 | 7.9B | 85.7 | 33.4 | 7.8B | | Copper | | 2160 JL | JL 766 | 444 JL | 3300 JL | 1330 JL | 19.0 | | Iron | | 179000 | 165000 | 67100 | 245000 | 00696 | 18700 JK | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | CS048 | CS049 | CS050 | CS051 | CS052 | TS001 | |--|---------------|--------------|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | CR-049-SD | CR-050-SD | CR-051-SD | CR-052-SD | CR-053-SD | TR-056-SD | | | Sample Date: | 05/31/2001 | 06/01/2001 | 06/01/2001 | 06/01/2001 | 06/01/2001 | 06/05/2001 | | Constituent | Depth (feet): | 0 in to 3 in | 0 in to 2 in | 0 in to 2 in | 0 in to 4 in | 0 in to 3 in | 0 in to 2 in | | Lead | | 317 | 282 | 309 | 512 | 276 | 37.7 | | Magnesium | | 6030 JL | 5750 JL | 8540 JL | 5970 JL | 3990 JL | 5060 | | Manganese | | 3130 | 2950 | 1080 | 4360 | 1990 | 80 40 | | Nickel | | 13.0 | 8.1B | 12.5 | 19.4 | 13.6 | 20.1 | | Potassium | | 3480 | 3770 | 1400 | 4330 | 2160 | 3100 JL | | Selenium | | 1.4 JL | 2.1 JL | 1.4 JL | 0.68 UJK | 1.5 JL | 0.89 B | | Silver | | 5.9 | 3.7 | 2.7 | 12.6 | Ω | 0.678 | | Sodium | | 1530 | 1050 | 385 B | 2630 | 1000 B | 258 B | | Thallium | | 0.76 U | 0.79 U | 0.91 U | 0.78 U | N 68'0 | 11 28 0 | | Total Mercury | - | 0.05 U | 0.05 U | 0.29 | 0.05 U | 0.06 U | 0.06 U | | Vanadium | | 36.3 | 38.2 | 28.8 | 45.0 | 28.6 | 31.0 | | Zinc | | 16500 | 15400 | 4900 | 22300 | 8820 | 85.8 | | Conventional Parameters | | | | | | | | | Total
Organic Carbon (mg/kg) | (b) | 1000 U | 1000 U | 8720 | 1000 U | 3130 | | | Grain Size (%) | | | | | | | 444 | | Percent Gravel | | 0 | 0 | | 0 | 0 | C | | Percent Sand | | 100 | 100 | 74 | 100 | 85 | , ru | | Percent Silt | | 0 | 0 | 25 | 0 | 15 | 06 | | Percent Clay | | 0 | 0 | 1< | 0 | 0 | - rc | | The state of s | | | | | | | • | SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS002 | TS003 | TS004 | TS005 | 05 | TS006 | 13007 | |---|----------------|--|---|---|---|---|---|--------------| | | Sample ID: | TR-057-SD | TR-058-SD | TR-059-SD | TR-061-SD | 1-SD | TR-062-SD | TR-060-SD | | | Sample Date: | 06/05/2001 | 06/03/2001 | 06/05/2001 | 06/03/2001 | 72001 | 06/05/2001 | 06/04/2001 | | Constituent | Depth (feet): | 0 in to 0.5in | 0 in to 3 in | 0 in to 3 in | 0 in to 2 in | , 2 in | 0 in to 2 in | 0 in to 4 in | | Semi-Volatile Organic Compounds (ug/kg) | counds (ug/kg) | | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | 13 U | | 4.6U | | 3.1 JQ | | 4,4'-DDT (p,p'-DDT) | - | | | 13 U | | 4.6U | | 3.7 U | | Alpha-chlordane | | | | 6.8 U | | 2.4 U | | 0.73 JQ | | Beta-BHC | | | | 5.9 JQ | | 2.4 U | | 1.9 U | | Endrin | - | | | 13 U | | 4.6U | | 3.7 U | | Endrin Aldehyde | | | | 13 U | | 4.6 U | | 1.5 JQ | | Methoxychlor | | | | U 89 | | 27 | | 190 | | PCB-1254 (Aroclor 1254) | | | | 130 U | | 46 U | | 37 U | | PCB-1260 (Aroclor 1260) | | | | 130 U | | 46 U | | 37 U | | Inorganics (Total) (mg/kg) | | manera de la calenta de
composito composi | PROCESS CO. S. C. III IN ADMINISTRATION OF SERVICE AND ADMINISTRATION OF SERVICE AS AN ASSETTING | tionica in temperature exciticity in the A. Comment of the administration | CONTRACTOR OF THE STATE | A MARKET TO A COLUMN TO A CONTRACT AND ADMINISTRAL TO A COLUMN | PT. HA TELLISPENIN PROPERTY I IIIIIII A. T. | | | Aluminum | | 12900 | 14400 | 8360 | | 3170 | 7830 | 12500 | | Antimony | | 0.89 B | 0.76 UJK | 2.9 U | | 0.94 UJK | 1.0 U | 0.68 UJK | | Arsenic | | 6.6 | 6.2 U | 4.6B | - | 3.7 U | 4.7 | 0.7.0 | | Barium | | 155 | 159 | 130B | | 49.3 B | 140 | 151 | | Beryllium | | 0.69 B | 0.72B | 0.45B | | 0.20B | 0.40B | 0.55B | | Cadmium | - | 0.30 B | 0.08 U | 0.29 U | - | 0.09 U | 0.100 | 0.38B | | Calcium | | 0806 | 7180 | 13400 | | 1630 | 15800 | 31800 | | Chromium | | 32.0 | 29.4 | 19.8 | | 8.9 | 18.3 | 24.5 | | Cobalt | | 9.4B | 9.0B | 6.18 | | 2.48 | 5.3B | 7.6B | | Copper | | 23.9 | 25.2 JL | 12.8 B | | 4.7 BJL | 6.6 | 21.6 JL | | Iron | | 21800 JK | 21700 | 17000 JK | | 0099 | 12800 JK | 17200 | | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS002 | TS003 | TS004 | TS005 | TS006 | TS007 | |------------------------------|---|---------------|--------------|--|--------------|--------------|--------------| | | Sample ID: | TR-057-SD | TR-058-SD | TR-059-SD | TR-061-SD | TR-062-SD | TR-060-SD | | | Sample Date: | 06/05/2001 | 06/03/2001 | 06/05/2001 | 06/03/2001 | 06/05/2001 | 06/04/2001 | | Constituent | Depth (feet): | 0 in to 0.5in | 0 in to 3 in | 0 in to 3 in | 0 in to 2 in | 0 in to 2 in | 0 in to 4 in | | Lead | | 27.7 | 14.8 | 8.6 | 2.9 | 8.1 | 26.6 | | Magnesium | | 7920 | 6720 | 3520 B | 1580 | 3590 | 5030 | | Manganese | | 546 | 612 | 939 | 172 | 206 | 453 | | Nickel | | 27.5 | 25.3 | 15.7B | 6.48 | 14.4 | 21.3 | | Potassium | | 3100 JL | 3530 | 1560 BJL | 629B | 1590 BJL | 2810 | | Selenium | *************************************** | 1.18 | 1,1 BJH | 3.7B | 1.10 | 2.2 | 0.82 BJH | | Silver | - | 0.75B | 0.66 B | 0.77 U | 0.25 U | 0.618 | 0.48 B | | Sodium | , | 344 B | 326B | 685B | 265 BU | 394B | 309B | | Thallium | | 0.90 U | 0.99 U | 3.7 U | 1.2 U | 1.3 U | 1880 | | Total Mercury | | 0.05 U | 0.06 U | 0.24 U | 0.08 U | 0.08 U | 0.06U | | Vanadium | | 41.4 | 37.7 | 19.4B | 8.5B | 19.9 | 23.8 | | Zinc | | 84.5 | 85.8 | 49.2 | 19.5 | 49.1 | 73.5 | | Conventional Parameters | | | | and the second s | | | | | Total Organic Carbon (mg/kg) | | | | 19300 | 2710 | | 18400 | | Grain Size (%) | - | | | | | | | | Percent Gravel | | 0 | 5 | 0 | 0 | 0 | ıc | | Percent Sand | | * | 30 | 30 | 06 | 09 | 52 | | Percent Silt | | 100 | 65 | 70 | 10 | 40 | 20 20 | | Percent Clay | | 0 | 0 | <u> </u> | 0 | \ <u>\</u> | 0 | | | | | | | | | • | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 20 of 60 Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | TS008 | TS009 | TS010 | TS011 | TS012 | TS013 | |---|--|---------------------------------------|--------------|--------------|--------------|--------------| | Sample ID: | TR-064-SD | TR-063-SD | TR-065-SD | TR-066-SD | TR-068-SD | TR-067-SD | | Sample Date: | 06/05/2001 | 06/04/2001 | 06/04/2001 | 06/05/2001 | 06/03/2001 | 06/04/2001 | | Constituent Depth (feet): | 0 in to 1 in | 0 in to 3 in | 0 in to 3 in | 0 in to 2 in | 0 in to 3 in | 0 in to 4 in | | Semi-Volatile Organic Compounds (ug/kg) | | | Y . | | | | | Benzyl Butyl Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4.4:DDF (p.p'-DDE) | | | | | | | | 4,4'-DDT (p,p'-DDT) | | | | | | | | Alpha-chlordane | | | | | | | | Beta-BHC | | | | | | | | Endrin | | | | | | | | Endrin Aldehyde | | | | | | | | Methoxychlor | | | | | | | | PCB-1254 (Aroclor 1254) | | | | | | | | PCB-1260 (Aroclor 1260) | | | | | | | | Inorganics (Total) (mg/kg) | Were the contract of contr | e e e e e e e e e e e e e e e e e e e | | | | | | Aluminum | 12100 | 14000 | 3770 | 13100 | 13200 | 2060 | | Antimony | 0.95B | 0.80 BJL | 1.3U | 0.89 B | 0.81 BJL | 1.0 UJK | | Arsenic | 4.6 | 6.2 | 4.6 | 3.7 | 3.5 U | 5.4 U | | Barium | 160 | 201 | 157 | 218 | 108 | 106 | | Beryllium | 0.60 B | 0.64B | 0.20 B | 0.66 B | 0.65B | 0.22B | | Cadmium | 0.79B | U 20:0 | 0.18B | 0.70 B | 0.08B | 0.10B | | Calcium | 0269 | 31200 | 131000 | 32200 | 6460 | 00259 | | Chromium | 22.7 | 29.9 | 21.0 | 27.5 | 30.5 | 15.3 | | Cobalt | 6.7B | 8.5B | 2.5B | 6.6B | 7.08 | 3.4B | | Copper | 18.8 | 23.7 JL | 9.4 B | 24.4 | 22.2 JL | 9.3 JL | | Iron | 17200 JK | 19900 | 5460 JK | 18100 JK | 19100 | 10300 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS008 | TS009 | TS010 | TS011 | TS012 | TS013 | |------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | TR-064-SD | TR-063-SD | TR-065-SD | TR-066-SD | TR-068-SD | TR-067-SD | | | Sample Date: | 06/05/2001 | 06/04/2001 | 06/04/2001 | 06/05/2001 | 06/03/2001 | 06/04/2001 | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 3 in | 0 in to 3 in | 0 in to 2 in | 0 in to 3 in | 0 in to 4 in | | Lead | | 44.9 | 15.9 | 5.6 | 53.4 | 14.8 | 6.4 | | Magnesium | | 5010 | 9140 | 2700 | 6800 | 6740 | 3290 | | Manganese | · · · · · · | 540 | 482 | 170 | 652 | 249 | 122 | | Nickel | | 17.6 | 24.9 | 10B | 20.2 | 20.6 | 14.3 | | Potassium | - | 3890 JL | 3770 | 830 BJL | 3180 JL | 2720 | 818B | | Selenium | - | 0.76 U | 0.78 U | 3.6 | 0.82 U | 0.81 U | 1.10 | | Silver | | 0.59 B | 0.50 B | 0.36 U | 0.53B | 0.60 B | 0.27 U | | Sodium | | 295 B | 372B | 4118 | 370B | 376B | 341BU | | Thallium | | 0.87 U | 0.89 U | 1.7 U | 0.94 U | 0.93 U | 1.30 | | Total Mercury | | 0.06 U | 0.06 U | 0.110 | 0.06 U | 0.06 U | 0.08 U | | Vanadium | - | 28.1 | 32.9 | 9.2 B | 32.8 | 28.8 | 13.6B | | Zinc | | 127 | 68.8 | 30.9 | 81.8 |
71.0 | 35.2 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (1 | | | | | | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 0 | 20 | 0 | 0 | 0 | | Percent Sand | | 15 | 100 | 80 | 10 | 40 | 75 | | Percent Silt | | 85 | 0 | 0 | 08 | 09 | 25 | | Percent Clay | | 0 | 0 | 0 | 10 | 0 | 0 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | TS014 | TS015 | TS016 | TS017 | TS018 | TS010 | |---|--|--|--|--------------|--
--| | Sample ID: | TR-069-SD | TR-070-SD | TR-071-SD | TR-072-SD | TR-073-SD | TR-074-SD | | Sample Date: | 06/04/2001 | 06/03/2001 | 06/05/2001 | 06/05/2001 | 06/06/2001 | 06/06/2001 | | Constituent Depth (feet): | 0 in to 3 in | 0 in to 2 in | 0 in to 1 in | 0 in to 1 in | 0 in to 1 in | 0 in to 2 in | | Semi-Volatile Organic Compounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylnexyl) Phthalate | The state of s | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | | | | 4,4'-DDT (p,p'-DDT) | | | | | | | | Alpha-chlordane | | | | | | | | Beta-BHC | | | | | A STATE OF THE PARTY PAR | | | Endrin | | | | | | | | Endrin Aldehyde | | | | | | | | Methoxychlor | | | | | Name of the last o | | | PCB-1254 (Aroclor 1254) | | | | | | | | PCB-1260 (Aroclor 1260) | | | | | | | | Inorganics (Total) (mg/kg) | the transfer constitution and the property of the constitution and and and | to the control of the party management of the control contr | The commencer of co | | | THE PERSON WITH THE PERSON PERSON TO THE PERSON WITH PERSO | | Aluminum | 5890 | 5940 | 2600 | 11800 | 10800 | 6920 | | Antimony | 1.4 U | 1.5 UJK | 0.96 BUJK | 1.0BJL | 0.71 UJK | 0.66 UJK | | Arsenic | 2.8B | 9.50 | 10 | 3.8 | 3.3 | 3,8 | | Barium | 144 | 90.8B | 68.9 | 139 | 120 | 71.3 | | Beryllium | 0.34B | 0.28B | 0.28 B | 0.58B | 0.518 | 0.29B | | Cadmium | 0.14 U | 0.15B | 0.07 U | 0.07 U | 0.07 U | 0.07 U | | Calcium | 168000 | 8190 | 3720 JK | 4650 JK | 16100 JK | 10800 JK | | Chromium | 14.1 | 20.8 | 12.2 | 21.8 | 23.6 | 17.1 | | Cobalt | 3.58 | 6.0B | 4.2B | 6.5B | 6.0B | 5.5B | | Соррег | 11.9 | 15.6 JL | 18.0 JL | 17.1 JL | 19.1 JL | 14.1 JL | | Iron | 8310 JK | 14200 | 10800 | 16200 | 15700 | 15000 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS014 | TS015 | TS016 | TS017 | TS018 | TS019 | |------------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | TR-069-SD | TR-070-SD | TR-071-SD | TR-072-SD | TR-073-SD | TR-074-SD | | | Sample Date: | 06/04/2001 | 06/03/2001 | 06/05/2001 | 06/05/2001 | 06/06/2001 | 06/06/2001 | | Constituent | Depth (feet): | 0 in to 3 in | 0 in to 2 in | 0 in to 1 in | 0 in to 1 in | 0 in to 1 in | 0 in to 2 in | | Lead | | 5.8 | 8.0 | 10.2 JH | 17,3 JH | 11.7.JH | 8.4 JH | | Magnesium | | 4500 | 3890 | 2930 | 4900 | 7110 | 4930 | | Manganese | | 292 | 1130 | 284 | 438 | 397 | 297 | | Nickel | | 11.4B | 15.3B | 12.4 | 17.5 | 17.7 | 23.8 | | Potassium | | 1580 BJL | 1090 B | 1420 | 3110 | 3420 | 1730 | | Selenium | -
 | 1.6B | 1.7 U | 0.74 U | 0.76U | 0.80 U | 0.75 U | | Silver | | 0.37 U | 0.52B | 0.32B | 0.49B | 0.34B | 0.39 B | | Sodium | | 472B | 544 B | 204B | 260 B | 295 B | 198 B | | Thallium | | 1.8 U | 2.0 U | 0.85 U | 0.87 U | 0.92 U | 0.86 U | | Total Mercury | | 0.12 U | 0.12 U | 0.06 U | 0.06 U | 0.06 U | 0.06 U | | Vanadium | | 14.8 B | 21.1B | 19.1 | 25.8 | 26.4 | 18.9 | | Zinc | | 30.7 | 46.9 | 45.6 | 64.1 | 9.09 | 43.9 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | kg) | | | | | | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 0 | 0 | 0 | 0 | 20 | | Percent Sand | | 06 | 09 | 20 | 20 | 10 | . 65 | | Percent Silt | | 10 | 40 | 20 | 80 | 80 | . 15 | | Percent Clay | | 0 | 0 | \ | 0 | 10 | 0 | | | | > | > | E. | > | | 2 | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 24 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS020 | TS021 | 21 | TS022 | | TS023 | TS024 | TS025 | |---|--|--|---------------
--|--------------|--|---|--|---| | | Sample ID: | TR-075-SD | TR-076-SD | 9-SD | TR-077-SD | F | TR-078-SD | TR-079-SD | TR-080-SD | | | Sample Date: | 06/03/2001 | 06/03/2001 | 2001 | 06/06/2001 | 0 | 06/06/2001 | 06/06/2001 | 06/06/2001 | | Constituent | Depth (feet): | 0 in to 2.5in | 0 in to 1.5in | 1.5in | 0 in to 2 in | 0 | 0 in to 1.5in | 0 in to 3 in | 0 in to 5 in | | Semi-Volatile Organic Compounds (ug/kg) | pounds (ug/kg) | | | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | 5.0 U |)
D | | | | | 4,4'-DDT (p,p'-DDT) | | | | | 5.0 U | _ | | | | | Alpha-chlordane | | | , | | 2.6 U | n | | | | | Beta-BHC | | | | | 2.6 U | n | | | • | | Endrin | | | | | 5.0 U | Ð | | | | | Endrin Aldehyde | | | | | 5.0 U | . n | | | | | Methoxychlor | | | | | 26 | 26 U | | | | | PCB-1254 (Aroclor 1254) | | | | | 20 | 50 U | | | | | PCB-1260 (Aroclor 1260) | | | | | 50 | 50 U | | | | | Inorganics (Total) (mg/kg) | and the state of t | A REPORT OF THE PROPERTY TH | | The state of s | | The state of s | ere men ere er | ACCEPTAGE OF THE PERSON | makende in derstande i de derste de | | Aluminum | | 6450 | | 11400 | 0777 | | 10100 | 13400 | 9340 | | Antimony | | 2.1 BJL | | 0.84 BJL | 2 | 1.5 BJL | 1.3 UJK | 1.1 BUJK | 1.1 BUJK | | Arsenic | | 4.4 BU | | 6.6 | 3.5B | В | 5.3 | 6.4 | 4.5 | | Barium | | 78.6B | | 146 | 173 | | 201 | 143 | 74.5 | | Beryllium | | 0.35B | | 0.58B | 0.37B | 8 | 0.55B | 0.70B | 0.41B | | Cadmium | | 0.15 U | | 0.29B | 0.13B | 88 | 0.13 U | 0.06 U | 0.06 U | | Calcium | | 10900 | | 13300 | 34300 JK | ¥ | 83500 JK | 5340 JK | 3400 JK | | Chromium | | 17.6 | | 26.8 | 20.9 | | 23.6 | 35.1 | 20.5 | | Cobalt | | 3.4B | - | 7.58 | 5.3 B | 3B | 7.18 | 10.8 | 6.9B | | Copper | | 12.9 JL | | 23.3 JL | 13.4 JL | J.L. | 21.1 JL | 26.7 JL | 16.9 JL | | Iron | | 9740 | | 19300 | 13800 | | 16200 | 24100 | 16100 | | | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS020 | TS021 | TS022 | TS023 | TS024 | TS025 | |------------------------------|---------------
---|---------------|--------------|---------------|--------------|--------------| | | Sample ID: | TR-075-SD | TR-076-SD | TR-077-SD | TR-078-SD | TR-079-SD | TR-080-SD | | | Sample Date: | 06/03/2001 | 06/03/2001 | 06/06/2001 | 06/06/2001 | 06/06/2001 | 06/06/2001 | | Constituent | Depth (feet): | 0 in to 2.5in | 0 in to 1.5in | 0 in to 2 in | 0 in to 1.5in | 0 in to 3 in | 0 in to 5 in | | Lead | | 8.5 | 24.9 | 8.6 JH | 11.0JH | 14.7 JH | 16.8 JH | | Magnesium | | 3070 | 7320 | 4150 | 7170 | 7090 | 4660 | | Manganese | | 291 | 439 | 363 | 414 | 594 | 359 | | Nickel | | 10.2B | 24.7 | 19.8 | 21.1 | 31.9 | 19.6 | | Potassium | | 1300 B | 2980 | 1430 B | 2580 | 3950 | 1900 | | Selenium | | 2.2 BJH | 0.71 U | 1.3 U | 1.4 U | 0.72 U | 0.72 U | | Silver | | 0.40 U | 0.63 B | 0.38B | 0.36B | 0.78B | 0.49 B | | Sodium | | 480 BU | 337 B | 378 B | 476B | 197 B | 1888 | | Thallium | | 2.0 U | 0.82 U | 1.5 U | 1.7 U | 0.83 U | 0.83 U | | Total Mercury | | 0.12 U | 0.05 U | O 60.0 | 0.110 | 0.05 U | 0.05 U | | Vanadium | | 16.2 B | 40.6 | 27.5 | 31.8 | 36.9 | 24.6 | | Zinc | | 50.2 | 110 | 63.1 | 77.1 | 82.8 | 68.8 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | 'Kg) | | | 20400 | | | | | Grain Size (%) | | MACCONTENT OF THE PROPERTY | | | | | | | Percent Gravel | | 0 | 0 | 0 | 0 | > | 0 | | Percent Sand | | 10 | 20 | 09 | 10 | 30 | 92 | | Percent Silt | | 20 | 55 | 30 | 06 | 65 | 35 | | Percent Clay | | 40 | 25 | 10 | 1 | 5< | 0 | | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | Otation ID. | | F000T | | 00001 | | | |---|--------------|--------------|---|--------------|---------------|--------------| | | | 12021 | 15028 | 15029 | 15030 | 15031 | | Sample ID: | | IR-082-SD | TR-083-SD | TR-084-SD | TR-085-SD | TR-086-SD | | Sample Date: | 06/03/2001 | 06/04/2001 | 06/06/2001 | 06/03/2001 | 06/06/2001 | 06/06/2001 | | Constituent Depth (feet): | 0 in to 2 in | 0 in to 3 in | 0 in to 2 in | 0 in to 1 in | 0 in to 1.5in | 0 in to 8 in | | Semi-Volatile Organic Compounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | | 4.5 U | | 4,4'-DDT (p,p'-DDT) | | | | | | 10 JL | | Alpha-chlordane | | | | | | 2.3 U | | Beta-BHC | | | | | | 2.3 U | | Endrin | | | | | | 4.5 U | | Endrin Aldehyde | | | | | | 4.5 U | | Methoxychlor | - | | | | | 23 U | | PCB-1254 (Aroclor 1254) | | | | | | 45U | | PCB-1260 (Aroclor 1260) | | | | | | 45 U | | Inorganics (Total) (mg/kg) | | | des commences estados e | | | | | Aluminum | 4500 | 8890 | 8550 | 6760 | 0609 | 3010 | | Antimony | 1.1 UJK | 1.48 | 1.7 BJL | 0.73 BJL | 0.67 UJK | 4.9BJL | | Arsenic | 3.1BU | 4.1 | 7.2 | 5.7 U | 4.2 | 5.8 | | Barium | 46.1B | 160 | 164 | 74.5 | 59.4 | 72.5 | | Beryllium | 0.25B | 0.44B | 0.39 B | 0.23B | 0.27 B | 0.13B | | Cadmium | 0.110 | 0.15B | 0.16 U | 13.1 | 0.17B | 2.4 | | Calcium | 2340 | 7610 | 22800 JK | 136000 | 4500 JK | 7750 JK | | Chromium | 9.2 | 14.8 | 18.6 | 11.7 | 13.4 | 5.2 | | Cobait | 1.98 | 6.0B | 7.18 | 4.3B | 4.4B | 2.2B | | Copper | 3.7 BJL | 14.5 | 21.8 JL | 18.6 JL | 13.4 JL | 11.8 JL | | Iron | 6280 | 12600 JK | 16300 | 12100 | 11000 | 5420 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | | | | | | | |------------------------------|---------------|--------------|--------------|--------------|--------------|---------------|--------------| | | | TS026 | TS027 | TS028 | TS029 | TS030 | TS031 | | | Sample ID: | TR-081-SD | TR-082-SD | TR-083-SD | TR-084-SD | TR-085-SD | TR-086-SD | | | Sample Date: | 06/03/2001 | 06/04/2001 | 06/06/2001 | 06/03/2001 | 06/06/2001 | 06/06/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 in to 3 in | 0 in to 2 in | 0 in to 1 in | 0 in to 1.5in | 0 in to 8 in | | Lead | | 3.1 | 16.7 | 18.3 JH | 17.9 | 8.6 JH | 115JH | | Magnesium | | 1670B | 3650 | 4510 | 4870 | 3200 | 1450 | | Manganese | - | 106 | 2020 | 1010 | 183 | 285 | 157 | | Nickel | | 5.18 | 14.4B | 22.1 | 45.6 | 13.7 | 6.8 B | | Potassium | | 868 B | 1790 BJL | 1680 B | 1110B | 1050 B | 1280 B | | Selenium | | 1.2 U | 2.2 | 1.8 U | 0.76 U | 0.76 U | 1.4 | | Silver | | 0.32B | 0.59B | 0.55 B | 0.22B | 0.31B | 0.25B | | Sodium | | 358 BU | 334B | 427 B | 253 B | 168 B | 228 B | | Thallium | | 1,4 U | 1.40 | 2.10 | 0.87 U | 0.88 U | 1.10 | | Total Mercury | - | 0.08 U | 0.09 U | 0.13 U | 0.06 U | 0.06 U | 0.13B | | Vanadium | | 9.1B | 20.7 | 22.5B | 29.0 | 17.8 | 8.8 | | Zinc | | 21.4 | 62.5 | 90.4 | 727 | 54.7 | 180 | | Conventional Parameters | ers | | | | | | | | Total Organic Carbon (mg/kg) | ng/kg) | | | | | | 328000 | | Grain Size (%) | | | | | | | | | Percent Gravel | | 10 | | 0 | 40 | 0 | 0 | | Percent Sand | · · · · | 40 | 35 | 09 | 30 | 65 | 100 | | Percent Silt | - | 20 | 65 | 40 | 30 | 20 | 0 | | Percent Clay | | 0 | 0 | \ | 1 | 15 | 0 | 12/13/2001 Page 28 of 60 SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | 1D: TS032 | TS033 | TS034 | TS035 | TS036 | TS037 | |---|-------------------|---|--------------
--|--------------|--| | Sample ID: | ID: TR-087-SD | TR-088-SD | TR-089-SD | TR-128-SD | TR-129-SD | TR-090-SD | | Sample Date: | late: 06/07/2001 | 06/03/2001 | 06/07/2001 | 06/09/2001 | 06/09/2001 | 06/04/2001 | | Constituent Depth (feet): | et): 0 in to 2 in | 0 in to 2 in | 0 in to 3 in | 0 in to 4 in | 0 in to 6 in | 0 in to 4 in | | Semi-Volatile Organic Compounds (ug/kg) | J/kg) | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Distribution (1976) Primaiate | | | | | | | | resucides/rcbs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | 3.6 U | | | 4,4'-DDT (p,p'-DDT) | | | | | 3.6∪ | | | Alpha-chlordane | | | | | 1.9 U | | | Beta-BHC | | | | | 1.9 U | | | Endrin | | | | | 3.6 U | | | Endrin Aldehyde | | | | | 3.6 U | | | Methoxychlor | | | | | 19 U | | | PCB-1254 (Aroclor 1254) | | | | | 36 U | | | PCB-1260 (Aroclor 1260) | | | | | 36 U | | | Inorganics (Total) (mg/kg) | | menterprise and reference of section 2000 section 100 | | The second secon | | A CANADA THE PART HAS ARRESTED TO THE TAX AND A CANADA THE PART OF | | Aluminum | 0889 | 12200 | 4270 | 8030 | 20000 | 5010 | | Antimony | 3.69 UJK | 3.4 UJK | 0.67 UJK | 0.82 UJK | 0.67 UJK | 1.08 | | Arsenic | 4.6 | 8.5BU | 1.78 | 6.4 JL | 5.5 JL | 3.2 | | Barium | 73.1 | 188B | 50.1 | 163 | 301 | 45.1 | | Beryllium | 0.33 B | 0.64B | 0.22 B | 0.35B | 0.98 B | 0.27B | | Cadmium | 0.07 U | 0.94B | 0.07 U | 0.33B | 0.20B | 0.47B | | Calcium | 17800 JK | 23100 | 9770 JK | 151000 | 7790 | 5320 | | Chromium | 12.0 | 16.3 | 9.6 | 15.8 | 40.1 | 10.3 | | Cobalt | 5.0B | 4.9B | 3.1B | 5.2B | 14.1 | 3.0B | | Copper | 15.8 JL | 21.7 BJL | 7.9 JL | 17.9 JL | 39.9 JL | 8.3 | | Iron | 13700 | 14600 | 8030 | 12300 | 27800 | 7960 JK | | | | | | | | t. | Table 2-1 - Sediment Sample Detected Concentrations | Sample ID: Sample Date: Constituent Depth (feet): Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | | | 15034 | TS035 | 15036 | TS037 | |--|--------------|--------------|--------------|--------------|--------------|--------------| | | TR-087-SD | TR-088-SD | TR-089-SD | TR-128-SD | TR-129-SD | TR-090-SD | | | 06/07/2001 | 06/03/2001 | 06/07/2001 | 06/09/2001 | 06/09/2001 | 06/04/2001 | | Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 0 in to 2 in | 0 in to 2 in | 0 in to 3 in | 0 in to 4 in | 0 in to 6 in | 0 in to 4 in | | Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 8.8 JH | 14.5 | 5.1 JH | 12.2 JL | 37.3 JL | 23.7 | | Manganese Nickel Potassium Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 3760 | 3860 B | 3170 | 4860 | 8670 | 2150 | | Nickel Potassium Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 251 | 548 | 194 | 348 | 836 | 213 | | Potassium Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 16.7 | 17.48 | 6.6 | 18.0 | 38.4 | 7.98 | | Selenium Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 1200 | 1740B | 944B | 1620 | 6120 | 1100 JL | | Silver Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 0.78 U | 4.8 BJH | 0.76 U | 1.5 | 0.76 U | 0.74 U | | Sodium Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 0.418 | 0.910 | 0.18B | 0.26B | 0.99 B | 0.38 B | | Thallium Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 189 B | 1010 BU | 182 B | 299 B | 279B | 1818 | | Total Mercury Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 0.90 U | 4.4 U | 0.87 U | 1.10 | U.87 U | 0.841 | | Vanadium Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 0.06 U | 0.27 U | 0.06 U | 0.07 U | 0.06 U | 0.05 U | | Zinc Conventional Parameters Total Organic Carbon (mg/kg) | 17.2 | 24.7 B | 14.0 | 20.6 | 44.8 | 13.7 | | Conventional Parameters Total Organic Carbon (mg/kg) | 53.0 | 95.8 | 33.6 | 61.2 | 120 | 67.7 | | Total Organic Carbon (mg/kg) | | | | | | | | | | | | | 35000 | | | Grain Size (%) | | | | | | | | Percent Gravel | 5 | 0 | 0 | 1< | \ <u>\</u> | С | | Percent Sand | 80 | 10 | 100 | 09 | ເດ | 100 | | Percent Silt | 15 | 80 | 0 | 35 | 65 | | | Percent Clay | 0 | 10 | 0 | 5< | 30 | 0 | SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | | Station ID. | Tense | Tenan | OVOOL | T0044 | CTCCH | | |---|-----------------|--------------------|--
--|--|---|--------------| | | Sample ID: | 13039
Co 190 GT | 8005 T | 0400 GT | 15061
TO 200 OT | 15042 | 15043 | | | Sample Date: | 06/04/2001 | 06/07/2001 | 06/07/2001 | 06/07/2001 | 06/07/2001 | 1R-097-5D | | Constituent | Depth (feet): | 0 in to 3 in | 0 in to 2 in | 0 in to 3 in | 0 in to 2 in | 0 in to 1 in | 0 in to 4 in | | Semi-Volatile Organic Compounds (ug/kg) | npounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | • | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 3.5 U | | | | | | | 4,4'-DDT (p,p'-DDT) | | 3.5 U | | | | | | | Alpha-chlordane | | 1.8 U | | | | | | | Beta-BHC | | 1.8 U | | | | | | | Endrin | | 3.5 U | | | | | | | Endrin Aldehyde | | 3.5 U | | | | | | | Methoxychlor | | 18 U | | | | | | | PCB-1254 (Aroclor 1254) | Ž. | 35 U | | | | | | | PCB-1260 (Aroclor 1260) | | 35 U | | | | | | | Inorganics (Total) (mg/kg) | | | en e | and the state of t | THE THE THE PROPERTY AND ADMINISTRATION OF THE PROPERTY | Name constant const. There is a series and a series and a series const. | | | Aluminum | | 14800 | 4430 | 5120 | 5610 | 8280 | 3500 | | Antimony | | 1.6 BJL | 0.84 UJK | 0.81 BJL | 0.86 UJK | K 2.6 BUJK | 1.1BJL | | Arsenic | | 19.3 | 1.4B | 2.4 | 3.5 | | | | Barium | | 315 | 43.3B | 51.5 | 54.7B | 153 | 30.3B | | Beryllium | - | 0.718 | 0.218 | 0.23B | 0.28 B | 0.39B | 0.16B | | Cadmium | | 0.74B | 0.08 U | 0.06 U | 0.09 U | 0.70B | 2.0 | | Calcium | | 6750 | S760 JK | 9240 | 3690 JK | 61100 JK | 1780 | | Chromium | | 35.1 | 89. | 9.4 | 12.8 | 11.4 | 6.1 | | Cobalt | | 13.5 | 2.2B | 3.0B | 3.8B | 5.2B | 1.78 | | Copper | | 39.6 JL | 6.5BJL | 7.9 JL | 9.6 JL | 18.7 JL | 5.5 JL | | Iron | | 30100 | 7670 | 8670 | 10800 | 12800 | 5010 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | Constituent | Station ID: | 15038 | TS039 | TS040 | TS041 | TS042 | TS043 | |------------------------------|---------------|--------------|--------------|--------------|--------------|--|--------------| | Constituent | Sample ID: | TR-091-SD | TR-093-SD | TR-094-SD | TR-095-SD | TR-096-SD | TR-097-SD | | Constituent | Sample Date: | 06/04/2001 | 06/07/2001 | 06/07/2001 | 06/07/2001 | 06/07/2001 | 06/04/2001 | | P | Depth (feet): | 0 in to 3 in | 0 in to 2 in | 0 in to 3 in | 0 in to 2 in | 0 in to 1 in | 0 in to 4 in | | Lead | | 95.6 | 5.1 JH | 6.7 JL | 5.6 JH | 11.5 JH | 34.9 | | Magnesium | - | 6710 | 2650 | 4470 | 3320 | 4950 | 1240 | | Manganese | | 803 | 152 | 146 | 326 | 235 | 670 | | Nickel | | 41.6 | 6.9B | 8.2B | 11.3B | 18.3 B | 3.8B | | Potassium | • | 3920 | 791 B | 1180 | 1070B | 1620 B | 595 B | | Selenium | | 0.74 U | 0.95 U | 0.72 U | 0.97 U | 2.7 | 0.74 U | | Silver | | 1.0B | 0.25B | 0.37 BU | 0.30 B | 0.41B | 0.28B | | Sodium | | 259 B | 245B | 212 BU | 221B | 453 B | 219 BU | | Thallium | | 0.85 U | 1.10 | 0.82 U | 1.10 | 1.8 U | 0.84 U | | Total Mercury | | 0.11 | 0.07 U | 0.05 U | U 200 | 0.12 U | 0.05 U | | Vanadium | | 48.5 | 19.2 | 14.4 | 18.1 | 24.4 | 9.2B | | Zinc | | 147 | 46.4 | 37.3 | 35.0 | 99.4 | 739 | | Conventional Parameters | | | | | | The state of s | | | Total Organic Carbon (mg/kg) | (6 | 43600 | | | | | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 10 | 5 | 0 | 0 | 0 | 0 | | Percent Sand | | 70 | 92 | 100 | 09 | 20 | 20 | | Percent Silt | | 20 | 0 | 0 | 40 | 20 | 30 | | Percent Clay | | 0 | 0 | 0 | 0 | 0 | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 32 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Contract Dr. | | | | | | | |---|---------------|--|---
---|--|--------------|--------------| | | Station ID: | 15044 | 15045 | 15046 | 18047 | 12048 | TS049 | | | Sample ID: | TR-104-SD | TR-105-SD | TR-106-SD | TR-107-SD | TR-098-SD | TR-099-SD | | | Sample Date: | 06/06/2001 | 06/04/2001 | 06/04/2001 | 06/04/2001 | 06/04/2001 | 06/07/2001 | | Constituent | Depth (feet): | 0 in to 4 in | 0 in to 7 in | 0 in to 1.5in | 0 in to 2 in | 0 in to 2 in | 0 in to 2 in | | Semi-Volatile Organic Compounds (ug/kg) | unds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 1.7 JQ | 4.2 U | 6.1 U | 6.3 U | 3.8 U | | | 4,4'-DDT (p,p'-DDT) | - | 3.8 U | 4.20 | 3.5 JQ | 6.30 | 3.8 U | | | Alpha-chlordane | | 2.0 U | 2.2 U | 3.1U | 3.3 U | 1.9 U | | | Beta-BHC | | 2.0 U | 2.2 U | 3.10 | 3.3 U | 1.9U | | | Endrin | | 3.8∪ | 4.2 U | 6.10 | 6.3 U | 3.8 U | | | Endrin Aldehyde | | 3.8 U | 4.2 U | 6.10 | 6.3 U | 3.8 U | | | Methoxychlor | | 20 U | 22 U | 310 | 33 U | 190 | | | PCB-1254 (Aroclor 1254) | | 380 | 450 | 610 | 030 | 38 U | | | PCB-1260 (Aroclor 1260) | | 380 | 45 U | 61 U | 63 U | 38 U | | | Inorganics (Total) (mg/kg) | | NATIONAL COLOR MAN AND AND AND AND AND AND AND AND AND A | t e e e e e e e e e e e e e e e e e e e | ter i desentant experie la marie conservar specia e d'amontant de tris soci | the contraction of contracti | | | | Aluminum | | 8460 | 7050 | 11700 | 8700 | 1550 | 3870 | | Antimony | | 0.73 UJK | 1.1 BJL | 2.2 BJL | 1.20 | 0.76 U | 0.63 UJK | | Arsenic | | 5.9 JL | 5.30 | 9.6 U | 3.9 BU | 1.4 BU | 1.78 | | Barium | - | 145 | 202 | 101 | 132 | 9.7B | 33.5B | | Beryllium | | 0.33B | 0.28B | 0.45B | 0.46B | 0.10B | 0.23B | | Cadmium | | 0.58B | 0.518 | 0.14U | 0.12U | 0.08 U | 0.06 U | | Calcium | | 00286 | 152000 | 43400 | 10900 | 1150 B | 2440 JK | | Chromium | | 13.0 | 10.5 | 24.7 | 12.8 | 2.08 | 5.9 | | Cobalt | | 4.6B | 3.9B | 10.4B | 5.0B | 0.53B | 2.1B | | Copper | | 17.5 JL | 21.2 JL | 26.8 JL | 10.4 | 2.18 | 9.9 JL | | Iron | | 11900 | 10100 | 23400 | 14000 JK | 3220 JK | 5980 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | *************************************** | Station ID: | TS044 | TS045 | TS046 | TS047 | TS048 | TS049 | |---|---------------|--------------|--------------|---------------|--------------|---|--------------| | *************************************** | Sample ID: | TR-104-SD | TR-105-SD | TR-106-SD | TR-107-SD | TR-098-SD | TR-099-SD | | Constitution + | Sample Date: | 06/06/2001 | 06/04/2001 | 06/04/2001 | 06/04/2001 | 06/04/2001 | 06/07/2001 | | Collstituerit | Depth (feet): | 0 in to 4 in | 0 in to 7 in | 0 in to 1.5in | 0 in to 2 in | 0 in to 2 in | 0 in to 2 in | | Lead | | 17.9 JL | 12.4 | 13.2 | 11.0 | 1.2 | HC 8.9 | | Magnesium | | 0229 | 3310 | 7910 | 4850 | 646 B | 1780 | | Manganese | | 257 | 431 | 372 | 390 | 47.4 | 126 | | Nickel | | 14.3 | 12.6 | 24.1 | 11.8B | 1.2 B | 5.1B | | Potassium | | 1640 | 1540 | 1700 B | 1390 BJL | 422 BJL | 790 B | | Selenium | | 1.7 | 1.1 BJH | 1.6 U | 1.30 | 0.86 U | 0.72 U | | Silver | | 0.43B | 0.30 B | 0.73B | 0.65B | 0.20 U | 0.17 U | | Sodium | | 287 B | 345B | 479 BU | 391B | 209 B | 169 B | | Thallium | | 0.94 U | 1.0 U | 1.9 U | 1.5 U | 0.99 U | 0.83 U | | Total Mercury | | 0.06 U | 0.06 U | 0.21B | 0.10 0 | 0.06 U | 0.05 U | | Vanadium | | 23.7 | 17.4 | 40.9 | 21.3 | 5.4B | 12.6 | | Zinc | | 92.3 | 68.2 | 71.9 | 57.3 | 7.5 | 23.2 | | Conventional Parameters | | | | | | Approximation of the contract | | | Total Organic Carbon (mg/kg) | (6 | 44700 | 48200 | 23100 | 20300 | 1000 U | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | - | 1< | | 20 | 0 | | Percent Sand | | 06 | 5< | 40 | 15 | 80 | 100 | | Percent Silt | | 10 | 06 | 09 | 40 | <u>^-</u> | 0 | | Percent Clay | | 0 | 5 | 0 | 44 | 0 | 0 | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 34 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS050 | | TS051 | TS052 | | TS053 | TS054 | TS055 | |---|---------------------------------------|---|---|--|--------------|----------
--|--|--| | | Sample ID: | TR-125-SD | | TR-100-SD | TR-101-SD | | TR-102-SD | TR-103-SD | TR-108-SD | | | Sample Date: | 06/09/2001 | | 06/07/2001 | 06/07/2001 | | 06/07/2001 | 06/07/2001 | 06/04/2001 | | Constituent | Depth (feet): | 0 in to 3 in | | 0 in to 3 in | 0 in to 4 in | | 0 in to 2 in | 0 in to 2 in | 0 in to 1 in | | Semi-Volatile Organic Compounds (ug/kg) | pounds (ug/kg) | | | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | | | | | | | 4,4'-DDT (p,p'-DDT) | | | | | | | | | | | Alpha-chlordane | | | | | | | | | | | Beta-BHC | | | | ************************************** | | | | | | | Endrin | | | | | | • | | | | | Endrin Aldehyde | | | | | | | | | | | Methoxychlor | | | | | | | | | | | PCB-1254 (Aroclor 1254) | | | | | | | | | | | PCB-1260 (Aroclor 1260) | | | | | | | | | | | Inorganics (Total) (mg/kg) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A PART OF THE THE PART OF THE | A property of the company of the company of | | | | A THE STREET OF THE STREET, ST | A A COLORES TO THE STATE OF THE A STATE OF THE A STATE OF THE | to the Control of Temporary American Section (1997) and the Control of Temporary Control of | | Aluminum | | 3760 | | 8560 | 2040 | 0 | 3080 | 3670 | 3740 | | Antimony | | 1.1 BUJK |),K | 0.91 BJL | 99:0 | 0.66 UJK | 0.70 UJK | 0.60 UJK | 0.88 U | | Arsenic | - | 1.10 | | 2.18 | 1.7B | 7.B | 1.5B | 1.2B | 2.8 BU | | Barlum | | 25.9 B | | 87.4 | 36.8 B | 8.B | 25.8B | 42.4 | 72.2 | | Beryllium | | 0.15B | | 0.41B | 0.14B | 48 | 0.20B | 0.22B | 0.23B | | Cadmium | | 0.08 U | | 0.56B | 0.07 U | 7.0 | 0.07 U | 0.06 U | O 60:0 | | Calcium | | 1850 | | 10100 | 2490 JK | Y € | 1420 | 2470 | 13800 | | Chromium | | 9.6 | | 21.5 | 3.9 | O | 5.9 | 8.4 | 6.6 | | Cobalt | | 1.9B | 300 | 4.6B |
 | 1.9B | 1.9B | 3.7B | 2.6B | | Copper | | 13.6 JL | | 27.0 JL | 6.7 | 6.7 JL | 6.4 JL | 7.3 JL | 5.7B | | Iron | | 5970 | | 11200 | 5480 | 0 | 5700 | 0089 | 7270 JK | | | | | | | - | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS050 | TS051 | TS052 | TS053 | TS054 | TS055 | |------------------------------
--|--|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | TR-125-SD | TR-100-SD | TR-101-SD | TR-102-SD | TR-103-SD | TR-108-SD | | Sai | Sample Date: | 06/09/2001 | 06/07/2001 | 06/07/2001 | 06/07/2001 | 06/07/2001 | 06/04/2001 | | Constituent De | Depth (feet): | 0 in to 3 in | 0 in to 3 in | 0 in to 4 in | 0 in to 2 in | 0 in to 2 in | 0 in to 1 in | | Lead | | 5.8 JL | 34.0 JL | 8.4 JH | 3.9 JL | 6.0 JL | 3.9 | | Magnesium | | 1920 | 3580 | 1210 | 1430 | 2440 | 2310 | | Manganese | - | 77.5 | 338 | 449 | 109 | 243 | 288 | | Nickel | | 5.8B | 12.3 | 3.8 B | 4.8B | 8.4 | 7.58 | | Potassium | | 576B | 1870 | 581B | 792B | 1120 | 937 BJL | | Selenium | | 0.91 U | 1.3B | 0.75 U | 0.79 U | 0.68 U | 1.0 U | | Silver | - | 0.45 BU | 0.60 BU | 0.18 U | 0.23 BU | 0.38 BU | 0.34B | | Sodium | - | 303 BU | 255 BU | 139B | 178 BU | 193 BU | 315B | | Thallium | | 1.0 U | 1.00 | 0.86 U | 0.91 U | 0.79 U | 1.10 | | Total Mercury | | U 20.0 | 0.07 U | 0.06 U | 0.06 U | 0.05 U | 0.07 U | | Vanadium | | 10.6 B | 22.4 | 6.7B | 10.7B | 12.8 | 12.0B | | Zinc | | 20.7 | 65.8 | 17.5 | 15.8 | 22.4 | 24.8 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | | | | | | | | | Grain Size (%) | The state of s | | | | | | | | Percent Gravel | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0 | 0 | 0 | 0 | 0 | | Percent Sand | | 02 | 20 | 100 | 85 | 100 | 06 | | Percent Silt | | 20 | 30 | 0 | 15 | 0 | જ | | Percent Clay | , | 0- | 0 | 0 | 0 | 0 | 5 | | | | A STATE OF THE PERSON P | | | | | | 12/13/2001 Page 36 of 60 SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | TS056 | TS057 | TS058 | 12059 | 12060 | TS061 | |---|---------------|--------------|---|---|--|--| | Sample ID: | TR-109-SD | TR-110-SD | TR-111-SD | TR-112-SD | TR-113-SD | TR-123-SD | | Sample Date: | 06/06/2001 | 06/06/2001 | 06/06/2001 | 06/09/2001 | 06/06/2001 | 06/06/2001 | | Constituent Depth (feet): | 0 in to 1.5in | 0 in to 3 in | 0 in to 4 in | 0 in to 5 in | 0 in to 1 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | 3.9U | 4.10 | | | | | | 4,4'-DDT (p,p'-DDT) | 3.9 U | 4.10 | | | | | | Alpha-chlordane | 2:00 | 2.10 | | | | | | Beta-BHC | 2.0 U | 2.1 U | | | | | | Endrin | 3.9 U | 4.10 | | | | | | Endrin Aldehyde | 3.9 U | 4.10 | | | | | | Methoxychlor | 20 U | 210 | | | | | | PCB-1254 (Aroclor 1254) | 0 6E | 410 | | | | | | PCB-1260 (Aroclor 1260) | 39 U | 41U | - | | | | | Inorganics (Total) (mg/kg) | | | HAR HET THE THE TRANSPORT MANAGEMENT OF THE | PART II C. PROMERO DE REPORTE MANAGEMENT PROPERTO PER CONTEST. C. | DERVICE A 1911 I III DE DEGLES DER BERTENDER DER BERTENDER BETTE BETTE BETTE BETTE BETTE BETTE BETTE BETTE BET | THE THE PERSON AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION OF THE PERSON AND ADMINISTRATION ADMINISTRATION AND ADMINISTRATION ADMINISTRATION AND ADMINISTRATION ADMIN | | Aluminum | 5370 | 4340 | 1210 | 4410 | 8190 | 8100 | | Antimony | 0.74 UJK | 0.78 UJK | 0.84 UJK | 0.91 BUJK | 1.0BJL | 1.9 BUJK | | Arsenic | 4.3 JL | 4.5 JL | 1.1 UJK | 1.4B | 25.5 | 30.0 | | Barium | 114 | 71.2 | 11.0B | 57.4 | 75.4 | 110 | | Beryllium | 0.21 B | 0.11B | 0.07 B | 0.22B | 0.34B | 0.45B | | Cadmium | 0.07 U | 0.08 U | 0.08 U | 0.08 U | 0.06 U | 2.1 | | Calcium | 161000 | 82800 | 910B | 22800 | 16700 | 10800 JK | |
Chromium | 8.6 | 9.5 | 1.6B | 15.8 | 31.4 | 16.1 | | Cobalt | 3.4B | 2.78 | 0.60 B | 2.58 | 7.08 | 9.3B | | Copper | 12.2 JL | 7.5 JL | 1.7 BJL | 8.2 JL | 15.6 JL | 29.9 JL | | Iron | 8940 | 11300 | 2040 | 8030 | 17300 | 19500 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS056 | TS057 | TS058 | TS059 | TS060 | TS061 | |------------------------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | TR-109-SD | TR-110-SD | TR-111-SD | TR-112-SD | TR-113-SD | TR-123-SD | | | Sample Date: | 06/06/2001 | 06/06/2001 | 06/06/2001 | 06/09/2001 | 06/06/2001 | 06/06/2001 | | Constituent | Depth (feet): | 0 in to 1.5in | 0 in to 3 in | 0 in to 4 in | 0 in to 5 in | 0 in to 1 in | 0 in to 3 in | | Lead | | 8.0 JL | 4.7 JL | 1.5 UJK | 6.5 JL | 7.8 JL | 18.0 JH | | Magnesium | | 4540 | 3740 | 569 B | 2780 | 5960 | .4530 | | Manganese | | 220 | 172 | 64.4 | 134 | 296 | 599 | | Nickel | | 9.6B | 9.5B | 1.28 | 7.4B | 28.4 | 24.9 | | Potassium | | 1170B | 607 B | 298 B | 767 B | 1020 | 1390 | | Selenium | | 0.84 U | 1.18 | 0.95 U | 0.92B | 0.69.0 | 0.76 U | | Silver | | 0.20 U | 0.21B | 0.22 U | 0.34 BU | 0.60 BU | 0.64B | | Sodium | | 274B | 201 B | 203 B | 254 BU | 216 BU | 188B | | Thallium | | 0.96 U | 1.0 U | 1.10 | 1.0 U | 0.79 U | U.87 U | | Total Mercury | | 0.06 U | 0.06 U | 0.07 U | 0.07 U | 0.05 U | 0.06 U | | Vanadium | | 12.8 | 12.8B | 3.4B | 13.3 | 28.0 | 25.7 | | Zinc | | 55.5 | 34.4 | 7.0 | 32.2 | 55.6 | 540 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | | 33200 | 1310 | | | | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 0 | 0 | 10 | 15 | 5 | | Percent Sand | | 80 | 80 | 100 | 70 | 75 | 06 | | Percent Silt | | 20 | 20 | 0 | 10 | 10 | ı, | | Percent Clay | | 0 | 0 | 0 | 10 | 0 | 0 | | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx A blank cell indicates analysis was not performed or the result was rejected during analysis. 12/13/2001 Page 38 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | | | | The state of s | | | | |---|----------------|--------------|--|--|---
--|--| | | Station ID: | TS062 | TS063 | TS064 | TS065 | TS066 | TS067 | | | Sample ID: | TR-124-SD | TR-126-SD | TR-037-SD | TR-038-SD | TR-039-SD | TR-114-SD | | | Sample Date: | 06/06/2001 | 06/08/2001 | 06/08/2001 | 06/08/2001 | 06/08/2001 | 06/05/2001 | | Constituent | Depth (feet): | 0 in to 7 in | 0 in to 4 in | 0 in to 3.5in | 0 in to 1 in | 0 in to 1.5in | 0 in to 2 in | | Semi-Volatile Organic Compounds (ug/kg) | pounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Desticides/PCRs (110/kg) | | | | | | | | | 4 4'-DDE (p.p'-DDE) | | | 2.71 | 1107 | | | | | 4,4-DDT (n.n'-DDT) | | | 3.40
1.40 |) | 3.80 | | O : | | Alpha-chlordane | | | 1.7 U | 4.2 O | | | 0.1.6 | | Beta-BHC | | | 1.7U | 2.2 U | 1.90 | | 2.10 | | Endrin | | | 3.4 U | 4.2 U | 3.8 U | | 4.10 | | Endrin Aldehyde | | | 3.4 U | 4.2 U | 3.8U | | 4.10 | | Methoxychlor | | | U 21 | 22 U | 190 | | 210 | | PCB-1254 (Aroclor 1254) | | | 340 | 45 N | 380 | | 410 | | PCB-1260 (Arocior 1260) | | | 34 U | 45 U | 38 U | The second secon | 41 U | | Inorganics (Total) (mg/kg) | | | en parameter de la contraction | A CAMPATAN AND AND AND AND AND AND AND AND AND A | te 100 - E des America e de montre amb la metal e transcribent de la companya | en er e ^r em komen er sommen men er och er | the control of co | | Aluminum | | 2600 | 0629 | 5210 | 10300 | 7350 | 1900 | | Antimony | | 0.78 UJK | 0.61 BUJK | X 0.79 UJK | 1.5 BUJK | 2.5 BUJK | 0.81 U | | Arsenic | | 2.5 BJL | 9.2 | 1.8.1L | 10.7 | 2.1 U | 1.3B | | Barium | | 40.2 B | 73.4 | 156 | 124 | 167 | 11.5B | | Beryllium | | 0.12B | 0.23B | 0.18B | 0.45B | 0.34B | 0.12B | | Cadmium | | 0.08 U | 0.06 U | 0.39 B | 0.88B | 0.50 B | 0.08 U | | Calcium | | 3960 | 33400 | 174000 | 12500 | 106000 | 1790 | | Chromium | | 6.5 | 17.6 | 11.2 | 20.1 | 21.4 | 3.2 | | Cobalt | | 1.78 | 5.6B | 4.0B | 7.98 | 4.6B | 0.91 B | | Copper | | 5.0 BJL | 22.0 JL | 14.3 JL | 30.0 JL | 19.4 JL | 1.7B | | Iron | | 5240 | 16500 | 9450 | 18600 | 13200 | 3370 JK | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS062 | TS063 | TS064 | TS065 | TS066 | TS067 | |------------------------------|---------------|--------------|--------------|---------------|--------------|---------------|--| | | Sample ID: | TR-124-SD | TR-126-SD | TR-037-SD | TR-038-SD | TR-039-SD | TR-114-SD | | | Sample Date: | 06/06/2001 | 06/08/2001 | 06/08/2001 | 06/08/2001 | 06/08/2001 | 06/05/2001 | | Constituent | Depth (feet): | 0 in to 7 in | 0 in to 4 in | 0 in to 3.5in | 0 in to 1 in | 0 in to 1.5in | 0 in to 2 in | | Lead | | 5.1 JL | 8.5 JL | 28.7 JL | 65.5 JL | 20.6 JL | 1.8 U | | Magnesium | | 1680 | 7750 | 4080 | 5340 | 6700 | 1620 | | Manganese | | 129 | 250 | 293 | 421 | 167 | 29.7 | | Nickel | | 4.9B | 17.9 | 11.3 | 19.2 | 15.1 B | 2.3B | | Potassium | | 532 B | 1160 | 824 B | 2860 | 1760 B | 431 BJL | | Selenium | | 0.88 U | 0.68 U | 0.89 U | 0.80 U | 3.8 | 0.92 U | | Silver | - | 0.24B | 0.73 BU | 0.210 | 0.86 BU | 0.56 BU | 0.22 U | | Sodium | | 210B | 282 B | 275 B | 265 BU | 562 BU | 222 B | | Thallium | | 1.0 U | 0.78 U | 1.0 U | 0.92 U | 2.10 | 1.10 | | Total Mercury | | 0.07 U | 0.05 U | U 20.0 | 0.05 U | 0.13 U | U 200 | | Vanadium | | 80.6 | 30.7 | 11.4B | 28.3 | 20.1 B | 5.3B | | Zinc | , | 20.2 | 50.5 | 52.0 | 123 | 102 | 7.6 | | Conventional Parameters | ٠. | | | | | | PANEL AND DESCRIPTION OF THE PAREL PROPERTY. | | Total Organic Carbon (mg/kg) | (t | | 6020 | 15800 | 45400 | | 2040 | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 2 | 3 | 1 | 0 | 10 | | Percent Sand | | 06 | 86 | 75 | 09 | 40 | 06 | | Percent Silt | | Ö | 0 | 20 | 40 | 55-60 | 0 | | Percent Clay | | 10 | 0 | 1 | \ | 5< | 0 | | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 40 of 60 Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | TSOBB | TS069 | TS070 | TS071 | 15072 | TS073 | |---|----------------|--------------
---|--|--|--| | Sample ID: | F | TR-119-SD | TR-116-SD | TR-117-SD | TR-118-SD | TR-120-SD | | Sample Date: | | 06/05/2001 | 06/05/2001 | 06/05/2001 | 06/05/2001 | 06/05/2001 | | Constituent Depth (feet): | ; 0 in to 1 in | 0 in to 3 in | 0 in to 8 in | 0 in to 2 in | 0 in to 3 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | (| | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | 3.5 U | | | 4,4'-DDT (p,p'-DDT) | | | | | 3.5 U | | | Alpha-chlordane | | | | | 0.89 JQ | | | Beta-BHC | | | | | 1.8 U | | | Endrin | | | | | 3.5 U | | | Endrin Aldehyde | | | | | 0.64 JQ | | | Methoxychior | | | | | 18 U | | | PCB-1254 (Aroclor 1254) | | | | | 35 U | | | PCB-1260 (Aroclor 1260) | | | | | 35 U | | | Inorganics (Total) (mg/kg) | | | TARAN MANANESIM MANANESIM AND | CONTRACTOR AND CONTRACTOR OF CONTRACTOR CONT | the section of the extremely object to the section of the extremely of the contract con | the manager of consider a state of the constant constan | | Aluminum | 1960 | 6430 | 5530 | 7360 | 5870 | 4190 | | Antimony | 1.0BJL | 0.89 U | 1.58 | 1.68 | 1.78 | 0.82 U | | Arsenic | 14.9 JL | 4.0 | 14.2 | 42.5 | 17.9 | 2.5 BU | | Barium | 116 | 49.4B | 73.4 | 153 | 106 | 31.8B | | Beryllium | 0.42 B | 0.38B | 0.36B | 0.41B | 0.37B | 0.25B | | Cadmium | 0.06 U | 0.09 U | 0.66 B | U 20:0 | 0.12B | 0.08 U | | Calcium | 21000 | 2280 | 3720 | 25400 | 47900 | 12400 | | Chromium | 21.1 | 13.6 | 13.3 | 21.5 | 12.6 | 8.4 | | Cobalt | 7.9B | 4.0B | 5.8B | 8.8 B | 7.4B | 2.48 | | Copper | 28.8 JL | 8.8 | 20.6 | 49.0 | 59.0 | 5.6B | | Iron | 25000 | 12900 JK | 18900 JK | 27400 JK | 22200 JK | MC 0999 | | | • | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station
ID: | TS068 | TS069 | TS070 | TS071 | TS072 | TS073 | |------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | TR-115-SD | TR-119-SD | TR-116-SD | TR-117-SD | TR-118-SD | TR-120-SD | | | Sample Date: | 06/06/2001 | 06/05/2001 | 06/05/2001 | 06/05/2001 | 06/05/2001 | 06/05/2001 | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 3 in | 0 in to 8 in | 0 in to 2 in | 0 in to 3 in | 0 in to 3 in | | Lead | | 14.2 JL | 7.1 | 62.2 | 14.7 | 11.2 | 3.4 | | Magnesium | | 5170 | 3640 | 2710 | 4570 | 5210 | 6860 | | Manganese | | 452 | 191 | 230 | 602 | 495 | 140 | | Nickel | | 24.1 | 13.3 | 14.8 | 31.9 | 21.9 | 6.38 | | Potassium | | 1210 | 910 BJL | 1330 JL | 1230 JL | 812 BJL | 741 BJL | | Selenium | | 0.78B | 1.0 U | 1.2 | 1.0B | 0.71 U | 0.95B | | Silver | | 0.77 B | 0.47B | 0.63 B | 0.78B | 0.518 | 0.26B | | Sodium | | 164 B | 219B | 200B | 182B | 178B | 261B | | Thallium | | 0.82 U | 1.2 U | 0.93 U | 1.18 | 0.81 U | 1.10 | | Total Mercury | | 0.05 U | 0.08 U | 0.08 B | 0.05 U | 0.05 U | U 200 | | Vanadium | | 33.0 | 24.7 | 25.5 | 35.1 | 24.8 | 10.28 | | Zinc | | 78.5 | 34.5 | 83.8 | 59.7 | 76.0 | 16.8 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (É | | | | | 10700 | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 10 | 5 | 0 | 0 | 10 | 0 | | Percent Sand | | 75 | 95 | 06 | 85 | 06 | 100 | | Percent Silt | | 15 | 0 | 10 | 15 | 0 | 0 | | Percent Clay | •• | 0 | 0 | 0 | 0 | 0 | 0 | | | • | | | | | | | SDODE A blank cell indicates analysis was not performed or the result was rejected during analysis. SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 42 of 60 Table 2-1 - Sediment Sample Detected Concentrations | 355 | Station ID: | TS074 | TS075 | TS078 | TS077 | TCO78 | TC070 | |---|---------------|--|--|---|--------------|---
--| | Sar | Sample ID: | TR-121-SD | TR-122-SD | TR-001-SD | TR-002-SD | TR-005-SD | TR-004-SD | | Samp | Sample Date: | 06/05/2001 | 06/05/2001 | 05/21/2001 | 05/22/2001 | 05/22/2001 | 05/22/2001 | | Constituent Dept | Depth (feet): | 0 in to 5 in | 0 in to 2 in | 0 in to 1 in | | Semi-Volatile Organic Compounds (ug/kg) | s (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | 4.6U | | | | | | 4,4'-DDT (p,p'-DDT) | | | 4.6U | | | | | | Alpha-chlordane | -
 | | 2.4 U | | | | | | Beta-BHC | | | 2.40 | man de la companya | | With the second | | | Endrin | | | 4.6U | | | | | | Endrin Aldehyde | | | 4.6 U | | | | | | Methoxychlor | | | 240 | | | | | | PCB-1254 (Aroclor 1254) | | | 46U | | | | | | PCB-1260 (Aroclor 1260) | | | 46 U | | | | | | Inorganics (Total) (mg/kg) | | A PERSONAL PROPERTY OF THE PRO | The state of s | mana mana piperin ang mana panganan ang mana mana mana mana mana man | | en mareo marido ese resultar sumas esente en esta relação e matembra | A A STATE OF THE S | | Aluminum | | 2840 | 4530 | JC 0/07 | JC 0222 | 9190 JL | 8750 JL | | Antimony | | 0.79 U | 0.87 UJK | 1.0BJL | 9.4 BJL | 3.3 BJL | 3.4 BJL | | Arsenic | | 1.6 BU | 1.48 | 3.2 JH | 25.4 JH | 54.0 JH | 23.5 JH | | Barium | | 33.6B | 42.6B | 74.5 JK | 406 JK | 183 JK | 128 JK | | Beryllium | - | 0.16B | 0.30B | 0.32 B | 0.30B | 0.45B | 0.36B | | Cadmium | | 0.08 U | 0.09 U | 0.86 B | 15.3 | 2.1 | 2.5 | | Calcium | - | 43700 | 2870 JK | 6540 JL | 17500 JL | 5390 JL | 24100 JL | | Chromium | | 6.2 | 13.1 | 14.4 JL | 12.5 JL | 12.4 JL | 14.5 JL | | Cobalt | | 1.5B | 3.18 | 4.2 BJL | 5.4 BJL | 8.1BJL | 6.4 BJL | | Copper | | 3.5B | 7.3 JL | 11.2 | 33.5 | 31.4 | 30.3 | | Iron | | 4650 JK | 9730 | 11600 JL | 15300 JL | 22700 JL | 17500 JL | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS080 | TS081 | TS082 | TS083 | TS084 | TSOR5 | |------------------------------|---------------|--------------|--------------|--|--------------|--------------|---------------| | | Sample ID: | TR-006-SD | TR-007-SD | TR-008-SD | TR-009-SD | TR-010-SD | TR-011-SD | | | Sample Date: | 05/22/2001 | 05/22/2001 | 05/22/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 1 in | 0 in to 1 in | 0 in to 2 in | 0 in to 2 in | 0 in to 0.5in | | Lead | | 13.8 JL | 54.3 JL | 79.4 JL | 128 JL | 5.3 JL | 15.7 JL | | Magnesium | - | 5740 JL | 6130 JL | 4970 JL | 5130 JL | 1610 JL | 3890 JL | | Manganese | | 340 JL | 133 JL | 289 JL | 288 JL | 114 JL | 95.1 JL | | Nickel | | 18.8 | 19.3B | 11.7 | 33.5 | 6.0B | 9.7B | | Potassium | | 1070 BJL | 1540 BJL | 1540 JL | 1460 BJL | 689 BJL | 647 BJL | | Selenium | | 2.2 | 5.0 | 1.18 | 3.8 | 0.69.0 | 1.8 | | Silver | | 0.31 U | 0.61 U | 0.25B | 0.43B | 0.16 U | 0.24 U | | Sodium | | 380 B | 611B | 237 B | 350 B | 141B | 244B | | Thallium | - | 1.5 UJK | 3.0 UJK | 0.98 UJK | 1.2 UJK | 0.79 UJK | 1.2 UJK | | Total Mercury | | O.09 U | 0.19 U | 0.10B | 0.118 | 0.05 U | 0.07 U | | Vanadium | | 17.9 BJL | 14.9 BJL | 13.8 JL | 28.9 JL | 10.8 JL | 12.2 BJL | | Zinc | | 79.4 | 117 | 185 | 212 | 27.4 | 103 | | Conventional Parameters | ·
· | | | | | | | | Total Organic Carbon (mg/kg) | | | | | | | | | Grain Size (%) | | | | And the state of t | | | | | Percent Gravel | | 0 | 0 | 0 | 0 | 0 | 0 | | Percent Sand | | 09 | 30 | 30 | 40 | 95 | 25 | | Percent Silt | | 30 | 09 | 30 | 30 | ĸ | 75 | | Percent Clay | · | 10 | 10 | 40 | 30 | 0 | 0 | | - | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 46 of 60 Table 2-1 - Sediment Sample Detected Concentrations | Station ID: |): TS086 | TS087 | TS088 | TS089 | TS090 | TS091 | |---|---|--------------
--|--------------|--|--| | Sample ID: |): TR-012-SD | TR-013-SD | TR-014-SD | TR-016-SD | TR-040-SD | TR-127-SD | | Sample Date: | 9: 05/23/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | 06/08/2001 | 06/08/2001 | | Constituent Depth (feet): |): UNK to UNK | 0 in to 1 in | 0 in to 1 in | 0 in to 2 in | 0 in to 3 in | 0 in to 6 in | | Semi-Volatile Organic Compounds (ug/kg) | 6 | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | | | | | 4.4 U | | | 4,4'-DDT (p,p'-DDT) | -
- | | | | 4.4 U | | | Alpha-chlordane | | | | | 2.3 U | | | Beta-BHC | | | | | 2.3 U | | | Endrin | | | | | 4.40 | | | Endrin Aldehyde | | | | | 4.4 U | | | Methoxychlor | | | | | 23 U | | | PCB-1254 (Arocior 1254) | | | | | 44 U | | | PCB-1260 (Aroclor 1260) | | | | | 44 U | | | Inorganics (Total) (mg/kg) | embermeter etrasument commercial and section of a security and commercial continues | | to describe the second control of the th | | e ser semenane de la proprie de la servició de la proprie de la servició se | er en econocia de la mentale econocia de la composição de la composição de la composição de la composição de l | | Aluminum | 1120 JL | 924 JL | 3000 JL | 5300 | 5940 | 8710 | | Antimony | 1.2 BJL | 0.80 UJK | 2.5 BJL | 2.18 | 0.90 UJK | 9.6 BJL | | Arsenic | 2.3 JH | 2.6 BJH | 7.0 JH | 5.0 | 9.7 | 12.0 | | Barium | 119 JK | 145 JK | 126 BJK | 98.0 | 42.6B | 288 | | Beryllium | 0.04 U | 0.05 U | 0.35B | 0.198 | 0.20B | 0.37B | | Cadmium | 0.41B | 0.77.8 | 5.1 | 3.7 | 0.09 U | 10.5 | | Calcium | 30000 JL | 336000 JL | 42800 JL | 11400 | 4590 | 5510 | | Chromium | 1.5BJL | 1.7 BJL | 19.7 JL | 7.6 | 16.6 | 12.3 | | Cobalt | 0.48 BJL | 0.44BJL | 5.2 BJL | 2.68 | 4.7 B | 4.5B | | Copper | 4.0B | 6.3B | 36.0 | 15.9 JL | 10.6 JL | 15.1 JL | | lion unit | 1440 JL | 1030 JL | 11700 JL | 8440 | 12500 | 11400 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS086 | TS087 | TS088 | TS089 | TS090 | TS091 | |------------------------------|---------------|------------|--------------|--------------|--------------|---------------------------------------|--------------| | | Sample ID: | TR-012-SD | TR-013-SD | TR-014-SD | TR-016-SD | TR-040-SD | TR-127-SD | | | Sample Date: | 05/23/2001 | 05/23/2001 | 05/23/2001 | 05/23/2001 | 06/08/2001 | 06/08/2001 | | Constituent | Depth (feet): | UNK to UNK | 0 in to 1 in | 0 in to 1 in | 0 in to 2 in | 0 in to 3 in | 0 in to 6 in | | Lead | | 10.8 JL | 18.9 JL | 21.8 JL | 105 | 7.2 JL | 405 JL | | Magnesium | | 2980 JL | 3800 JL | 4100 JL | 2690 JL | 4240 | 2770 | | Manganese | | 41.4 JL | 46.6 JL | 238 JL | 326 | 192 | 1210 | | Nickel | | 3.3B | 2.9B | 35.0 | 7.4B | 25.9 | 10.8 | | Potassium | | 296 BJL | 265 BJL | 1320 BJL | 1140B | 7718 | 1490 | | Selenium | | 0.73 U | 0.91 U | 3.3 | 1.4 JL | 1.0 U | 0.88 U | | Silver | | 0.17 U | 0.21 U | 0.70B | 0.41B | 0.75 BU | 0.72 BU | | Sodium | | 205 B | 276B | 723 B | 213B | 408 B | 273 BU | | Thallium | | 0.84 UJK | 1.0 UJK | 2.5 UJK | 1.10 | 1.2 U | 1.0 U | | Total Mercury | | 0.05 U | 0.06 U | 0.16 U | 0.07 U | 0.07 U | 0.08 B | | Vanadium | | 3.6 BJL | 2.7 BJL | 24.6 BJL | 13.3B | 29.3 | 17.7 | | Zinc | | 28.5 | 55.7 | 135 | 421 | 37.0 | 495 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | | | | | | 9430 | | | Grain Size (%) | | | | | | | | | Percent Gravel | , at 041 50 | | 10 | 0 | _ | 5 < | 0 | | Percent Sand | | | 09 | 09 | 06 | 85 | 02 | | Percent Silt | | | 30 | 35 | 10 | 10 | 30 | | Percent Clay | | | 0 | 2 | 0 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1 | | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 48 of 60 Table 2-1 - Sediment Sample Detected Concentrations | The state of s | | | | | | |
--|---|--|--------------|--|--|--------------| | Station ID: | n ID: TS092 | TS093 | TS094 | TS095 | TS096 | TS097 | | Sample ID: | e ID: TR-041-SD | TR-017-SD | TR-018-SD | TR-019-SD | TR-042-SD | TR-020-SD | | Sample Date: |)ate: 06/08/2001 | 05/24/2001 | 05/24/2001 | 05/24/2001 | 06/08/2001 | 05/24/2001 | | Constituent Depth (feet): | eet): 0 in to 1 in | 0 in to 2 in | 0 in to 3 in | 0 in to 2 in | 0 in to 5 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | g/kg) | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | 5.10 | | | | 4.4 U | | | 4,4'-DDT (p,p'-DDT) | 5.10 | | | | 4.4 U | | | Alpha-chlordane | 2.6U | | | | 2.3 U | | | Beta-BHC | 2.6 U | | | | 2.3 U | | | Endrin | 5.10 | | | | 4.4 U | | | Endrin Aldehyde | 5.1U | | | | 4.4 U | | | Methoxychlor | 26 U | | | | 23 U | | | PCB-1254 (Aroclor 1254) | 510 | | | | 44 U | | | PCB-1260 (Aroclor 1260) | 91 O | | | | 44 U | | | Inorganics (Total) (mg/kg) | annon transcription from the extensive residents of section of the extensive residents of the | AND CONTRACT TO A CONTRACT OF THE AND CONTRACT OF THE ANDREWS AND A CONTRACT OF THE ANDREWS T | | and the second of o | Commission of the second secon | | | Aluminum | 4900 | 7530 JL | 8880 | 1200 | 4190 | 5740 | | Antimony | 1.5 UJK | 1.2BJL | 0.63B | 1.70 | 1.2 BUJK | 1.2 U | | Arsenic | 5.2 | HL 7.7 | 7.0 | 2.2U | 8.4 | 4.8 JL | | Barlum | 105 | 84.6 JK | 108 | 59.8B | 42.4B | 148 | | Beryllium | 0.17B | 0.31B | 0.34B | 0.110 | 0.21B | 0.24B | | Cadmium | 0,168 | 1.3 | | 0.23B | 0.08 U | 1.0B | | Calcium | 49100 | 3030 JL | 5440 | 91500 | 13700 | 121000 | | Chromium | 14.9 |
16.8 JL | 19.9 | 3.7B | 11.3 | 14.7 | | Cobalt | 3.6B | 5.5 BJL | 4.7 B | 0.61 U | 3.9B | 4.3B | | Copper | 11.5BJL | 15.5 | 13.7 JL | 3.6BJL | 10.2 JL | 16.1 JL | | Iron | 9410 | 13500 JL | 16000 | 2600 | 10900 | 9520 | | | • | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS092 | TS093 | TS094 | TS095 | TS096 | TS097 | |------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------| | | Sample ID: | TR-041-SD | TR-017-SD | TR-018-SD | TR-019-SD | TR-042-SD | TR-020-SD | | | Sample Date: | 06/08/2001 | 05/24/2001 | 05/24/2001 | 05/24/2001 | 06/08/2001 | 05/24/2001 | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 2 in | 0 in to 3 in | 0 in to 2 in | 0 in to 5 in | 0 in to 3 in | | Lead | | 11.3 JL | 50.2 JL | 44.0 | 5.5 | 9.3 JL | 22.2 | | Magnesium | | 3210 | 3700 JL | 4300 JL | 1290 BJL | 3480 | 3410 JL | | Manganese | | 866 | 352 JL | 450 | 73.0 | 183 | 564 | | Nickel | | 9.9B | 14.8 | 18.8 | 2.9B | 11.7 | 16.7 | | Potassium | | 705B | 1910 JL | 1460 | 300 B | 571B | 1140B | | Selenium | | 1.7 U | 0.82B | 0.71 UJK | 1.9 UJK | 0.88 U | 2.1 JL | | Silver | | 0.49 BU | 0.40B | 0.60 B | 0.44 U | 0.51 BU | 0.39B | | Sodium | | 523 BU | 217B | 133 B | 317B | 237 BU | 291B | | Thallium | | 1.9 U | 0.85 UJK | 0.81 U | 2.2.0 | 1:00 | 1.6 U | | Total Mercury | | 0.12 U | 0.05 U | 0.05 U | 0.13 U | 0.06 U | 0.10 U | | Vanadium | | 16.7 B | 24.9 JL | 23.7 | 4.2B | 20.0 | 16.1B | | Zinc | | 42.2 | 0.79 | 109 | 16.2 | 48.4 | 95.2 | | Conventional Parameters | · | | | | | | | | Total Organic Carbon (mg/kg) | (kg) | 30400 | | | | 0069 | | | Grain Size (%) | | - | | | | | | | Percent Gravel | | | 0 | - | 0 | 5. | 0 | | Percent Sand | | 09 | 50 | 40 | 09 | 85 | 40 | | Percent Silt | | 30 | 40 | 50 | 40 | 10 | 40 | | Percent Clay | | 10< | 10 | 10 | 0 | 0 | 20 | 12/13/2001 Page 50 of 60 SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | en en de en | | | | | | | |---|--------------|--------------|--|--------------|--|--| | Station ID: | TS098 | TS099 | TS100 | TS101 | TS102 | TS103 | | Sample ID: | TR-022-SD | TR-043-SD | TR-023-SD | TR-044-SD | TR-024-SD | TR-025-SD | | Sample Date: | 05/24/2001 | 06/08/2001 | 05/24/2001 | 06/09/2001 | 05/24/2001 | 05/24/2001 | | Constituent Depth (feet): | 0 in to 3 in | 0 in to 4 in | 0 in to 1.5in | 0 in to 4 in | 0 in to 1 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | - | • | | Pesticides/PCBs (ug/kg) | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 4.4 U | | 4.0 U | | | | 4,4'-DDT (p,p'-DDT) | | 4.4 U | | 4.0 U | | | | Alpha-chlordane | | 2.3 U | | 2.10 | | | | Beta-BHC | | 2.3 U | | 2.10 | | | | Endrin | | 6.3 | | 4.0 U | | | | Endrin Aldehyde | | 4.4 U | | 4.0 U | | | | Methoxychlor | | 23 U | | 210 | | | | PCB-1254 (Aroclor 1254) | | 44 C | | 40 D | | | | PCB-1260 (Aroclor 1260) | | 44 U | | 40 U | | | | Inorganics (Total) (mg/kg) | | | and we assume the second secon | | er men i i manne entre en men men jaken men en et en | The second section of the second seco | | Aluminum | 7140 | 3090 | 11500 | 6750 | 11300 | 2300 | | Antimony | 3.3B | 0.83 UJK | 4.8B | 0.91 BUJK | 1,88 | 0.4.L | | Arsenic | 8.6 | 1.6B | 15.9 | 3.8 | 7.7 | 1.9 U | | Barium | 273 | 41.5B | 210 | 60.2 | 219 | 198 | | Beryllium | 0.32B | 0.17B | 0.60 B | 0.26B | 0.60 B | 0.09 U | | Cadmium | 21.5 | 0.17B | 11.4 | 0.11B | 3.4 | 0.86B | | Calcium | 155000 | 6380 | 16900 | 36200 | 8070 | 185000 | | Chromium | 21.3 | 4.6 | 23.1 | 15.7 | 23.6 | 4.8 | | Cobalt | 5.5B | 1.6B | 8.0B | 4.6B | 6.68 | 1.08 | | Copper | 42.5 JL | 3.9 BJL | 42.2 JL | 12.7 JL | 51.8 JL | 4.9BJL | | Iron | 11700 | 6230 | 19300 | 13900 | 20200 | 3160 | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | Sample ID: Sample ID: Sample Date: Constituent Depth (feet): Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium | Sample ID: | | | | | 15102 | 15103 | |---|-------------|--------------|--------------|---------------|--------------|--------------|--------------| | | | TR-022-SD | TR-043-SD | TR-023-SD | TR-044-SD | TR-024-SD | TR-025-SD | | | Date: | 05/24/2001 | 06/08/2001 | 05/24/2001 | 06/09/2001 | 05/24/2001 | 05/24/2001 | | Lead Magnesium Manganese Nickel Potassium Selenium Silver | (feet): | 0 in to 3 in | 0 in to 4 in | 0 in to 1.5in | 0 in to 4 in | 0 in to 1 in | 0 in to 3 in | | Magnesium Manganese Nickel Potassium Selenium Silver | | 84.8 | 13.2 JL | 478 | 8.1 JL | 208 | 10.8 | | Manganese Nickel Potassium Selenium Silver | | 4990 JL | 2790 | 5630 JL | 4910 | 6580 JL | 2910 JL | | Nickel Potassium Selenium Silver Sodium | · | 277 | 113 | 594 | 208 | 193 | 301 | | Potassium
Selenium
Silver
Sodium | | 36.8 | 4.3B | 20.7 | 16.0 | 19.5 | 4,18 | | Selenium
Silver
Sodium | | 1340 B | 701B | 2540 | 1380 | 1290 | 571B | | Silver | | 28.4 JL | 0.95 U | 0.92 UJK | 0.92 U | 1.4 JL | 1.6 UJK | | Sodium | | 0.71B | 0.40 BU | 1.18 | 0.59 BU | 1.0B | 0.37 U | | | | 236 B | 241BU | 174B | 297 BU | 173B | 327 B | | Thallium | | 1.2 U | 1.10 | 1.10 | 1.10 | 0.810 | 1.8 U | | Total Mercury | | 0.07 U | 0.06 U | 0.14B | 0.06 U | 0.14 | 0.110 | | Vanadium | | 21.1 | 11.9B | 31.7 | 26.6 | 33.8 | 5.2B | | Zinc | | 403 | 98.4 | 581 | 138 | 379 | 31,4 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | | | 7670 | | 9280 | | | | Grain Size (%) | | | | | | | | | Percent Gravel | | | 0 | 0 | ဇ | 0 | 0 | | Percent Sand | - | | 26 | 75 | . 87 | 20 | 85 | | Percent Silt | | - |
3 | 25 | 10 | 80 | 15 | | Percent Clay | | | 0 | 0 | 0 | 0 | 0 | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 52 of 60 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS104 | TS105 | TS106 | TS107 | TS108 | TS109 | |---|--|--------------|--------------|--------------|--|---------------|--| | | Sample ID: | TR-045-SD | TR-047-SD | TR-026-SD | TR-027-SD | TR-028-SD | TR-029-SD | | | Sample Date: | 06/09/2001 | 06/08/2001 | 05/31/2001 | 05/31/2001 | 05/31/2001 | 06/01/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 in to 4 in | 0 in to 2 in | 0 in to 4 in | 0 in to 4.5in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | unds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 4.6U | 4.00 | 3.4 U | | 6.0 U | 5.0 U | | 4,4'-DDT (p,p'-DDT) | | 4.6 U | 4.00 | 3.4 U | | 5.2 J | 5.0 U | | Alpha-chlordane | | 2.40 | 2.1 U | 1.8 U | | 3.10 | 2.6 U | | Beta-BHC | | 2.4 U | 2.10 | 1.8 U | , | 3.10 | 2.6 U | | Endrin | | 4.6 U | 4.0 U | 3.4 U | | 6.0 U | 5.0 U | | Endrin Aldehyde | | 4.6 U | 4.0 U | 3.4 U | | 6.0 U | 5.0 U | | Methoxychlor | | 24 U | 210 | 180 | | 34 | 36 | | PCB-1254 (Arocior 1254) | | 46 U | 40 N | 34 U | | 0.09 | 20 U | | PCB-1260 (Aroclor 1260) | | , 46 U | 400 | 34 U | | 0 09 | 20 U | | Inorganics (Total) (mg/kg) | PROPERTY AND PROPERTY OF THE P | | | | A COLOR DE LA CASA DEL CASA DE LA CASA DEL CASA DE LA C | | The second section of the second section of the second section | | Aluminum | | 6480 | 3480 | 9470 | 8840 | 2890 | 8130 | | Antimony | | 1.1 BJL | 0.74 UJK | 0.62 UJK | 0.818 | 2.48 | 0.89 U | | Arsenic | | 3.7 | 2.6 | 7.7 | 7.0 | 4.5 | 4.9 | | Barium | | 121 | 28.4B | 104 | 155 | 102 | 127 | | Beryllium | | 0.31B | 0.13B | 0.69 B | 0.48B | 0.30B | 0.19B | | Cadmium | | 1.8 | 0.07 U | 0.06 U | 0.54B | 4.8 | 0.79B | | Calcium | | 110000 | 3330 | 6120 | 10500 | 5630 | 15600 | | Chromium | | 20.6 | 7.4 | 31.8 | 26.1 | 14.4 | 13.8 | | Cobalt | | 4.5B | 2.1B | 7.0B | 6.7B | 5.3B | 8.5B | | Copper | | 18.3 JL | 9.7 JL | 21.4 JL | 26.8 JL | 22.3 JL | 26.7 JL | | Iron | | 10800 | 6850 | 18800 | 18700 | 14300 | 19100 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS104 | TS105 | TS106 | TS107 | TS108 | TS109 | |------------------------------|---------------|--------------|--------------|--------------|--------------|---------------|--------------| | | Sample ID: | TR-045-SD | TR-047-SD | TR-026-SD | TR-027-SD | TR-028-SD | TR-029-SD | | | Sample Date: | 06/09/2001 | 06/08/2001 | 05/31/2001 | 05/31/2001 | 05/31/2001 | 06/01/2001 | | Constituent | Depth (feet): | 0 in to 2 in | 0 in to 4 in | 0 in to 2 in | 0 in to 4 in | 0 in to 4.5in | 0 in to 3 in | | Lead | | 29.3 JL | 3.3 JL | 23.7 | 73.8 | 151 | 16.5 | | Magnesium | | 4210 | 2470 | 6030 | 7400 JL | 3120 JL | 4290 JL | | Manganese | | 223 | 123 | 348 | 291 | 139 | 358 | | Nickel | | 17.4 | 8.3B | 24.6 | 20.2 | 12.18 | 29.8 | | Potassium | | 1450 | 596 B | 1290 | 1270 | 1540 B | 694 B | | Selenium | | 1.7 | 0.84 U | 0.70 U | 1.8 JL | 2.4 JL | 1.6 JL | | Silver | | 0.47 B | 0.37 BU | 0.69B | 0.748 | 0.67 B | 0.79B | | Sodium | | 294 BU | 255 BU | 345 B | 260 B | 148 B | 139 B | | Thallium | | 1.1 U | 0.96 U | 0.80 U | 0.90 U | 1.4 UJK | 1.2 UJK | | Total Mercury | | 0.07 U | 0.06 U | 0.08 B | 0.18 | 0.09 U | 0.07 U | | Vanadium | | 22.5 | 12.4 | 39.5 | 32.3 | 24.9 | 18.2 | | Zinc | | 148 | 21.2 | 78.8 | 238 | 220 | 134 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | kg) | 42700 | 1000 U | 4980 | | 57700 | 13200 | | Grain Size (%) | | | | | | | | | Percent Gravel | | | 5 | 10 | 10 | 0 | rc. | | Percent Sand | | 02 | 98 | 20 | 20 | 20 | 22 | | Percent Silt | | 25 |
0 | 40 | 93 | 40 | 30 | | Percent Clay | | r. | 0 | 0 | 10< | 10 | 10 | | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 54 of 60 Table 2-1 - Sediment Sample Detected Concentrations | Station ID: | 1D: TS110 | | US001 | US002 | US003 | US004 | US005 | |---|-------------------|---|--------------|--------------|---|--------------|---| | Sample ID: | ID: TR-030-SD | | BK-150-SD | BK-152-SD | BK-153-SD | BK-155-SD | BK-130-SD | | Sample Date: |)ate: 06/01/2001 | | 06/27/2001 | 06/28/2001 | 06/28/2001 | 06/28/2001 | 06/25/2001 | | Constituent Depth (feet): | et): 0 in to 8 in | . A. | 0 in to 3 in | 0 in to 2 in | 0 in to 4 in | 0 in to 2 in | 0 in to 3 in | | Semi-Volatile Organic Compounds (ug/kg) | J/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | -n -an | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | 4 | 4.3 U | 5.1 U | 4.2 U | 3.8 U | 3.9 U | 5.3 U | | 4,4'-DDT (p,p'-DDT) | <u></u> | 5.9 JQ | 5.1 U | 4.2 U | 3.8 U | 3.9 U | 5.3 U | | Alpha-chlordane | 2. | 2.2 U | 2.6U | 2.2 U | 2.0 U | 2.0 U | 2.7 U | | Beta-BHC | 2. | 2.2 U | 2.6 U | 2.2 U | 2.0 U | 2.0 U | 2.7 U | | Endrin | 4 | 4.3 U | 5.10 | 4.2 U | 3.80 | 3.9 U | 5.3 U | | Endrin Aldehyde | 4 | 4.3 U | 5.10 | 4.2 U | 3.80 | 3.9 U | 5.3 U | | Methoxychlor | 2 | 22 U | 26U | 22 U | 20 U | 20 U | 27 U | | PCB-1254 (Aroclor 1254) | 4 | 43 U | 51 U | 45 N | 380 | 0 6E | 53 U | | PCB-1260 (Aroclor 1260) | 7 | 43 U | 51 U | 45 U | 380 | 39 U | 53 U | | Inorganics (Total) (mg/kg) | | THE TAXABLE PARTY OF THE | | | the theorem exists the second of | | to the desired and desired on the second of | | Aluminum | 6850 | 0 | 3750 | 5120 | 0966 | 7950 | 3410 | | Antimony | 4 | 14.3 JL | 9.2 U | 7.2 U | 0.80 | 6.5 U | 8.6U | | Arsenic | 21.4 | 4 | 6.7 | 1.5B | 0.47 U | 2.6 | 1.9B | | Barium | 51.4 | 4 | 166 | 34.2 B | 19.2B | 68.4 | 50.8B | | Beryllium | 0.2 | 0.26B | 0.20 U | 0.17 U | 0.17 U | 0.36 U | 0.20 U | | Cadmium | .2 | 2.8 | 46.2 JK | 0.35 BJK | 0.05 UJK | 0.38 BJK | 0.06 BJK | | Calcium | 2480 | 0 | 214000 JK | 1160 BJK | 915 BJK | 1520 JK | 1760 JK | | Chromium | 12.6 | . 9 | 7.0 | 6.7 | 16.4 | 14.1 | 2.2B | | Cobalt | 7 | 2.2B | 2.2B | 4.8B | 10.5B | 9.3 B | 1.6 U | | Copper | 22. | 22.7 JL | 28.5 JK | 6.1 BJK | 8.7 JK | 12.7 JK | 3.7 BJK | | Iron | 10900 | 0 | 7050 | 14300 | 24500 | 13600 | 4520 | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | TS110 | US001 | US002 | US003 | US004 | US005 | |------------------------------|---------------|--------------|--------------|--------------|--------------|--------------
--| | | Sample ID: | TR-030-SD | BK-150-SD | BK-152-SD | BK-153-SD | BK-155-SD | BK-130-SD | | | Sample Date: | 06/01/2001 | 06/27/2001 | 06/28/2001 | 06/28/2001 | 06/28/2001 | 06/25/2001 | | Constituent | Depth (feet): | 0 in to 8 in | 0 in to 3 in | 0 in to 2 in | 0 in to 4 in | 0 in to 2 in | 0 in to 3 in | | Lead | | 589 | 20.3 | 6.4 | 5.0 | 14.8 | 2.7 | | Magnesium | | 3480 | 2660 | 2230 | 4490 | 3290 | 799 B | | Manganese | | 176 | 177 | 178 | 235 | 669 | 387 | | Nickel | | 8.0B | 66.7 | 19.9 | 20.0 | 20.3 | 2.5 U | | Potassium | | 1660 | 353 B | 335 B | 233B | 556 B | 508 B | | Selenium | | 0.81 BJH | 0.60 U | 0.76B | 0.44 U | 0.42 U | 0.56 U | | Silver | | 1.1B | 0.85 UJL | 0.67 UJL | 0.63 UJL | 0.60 UJL | 0.80 UJL | | Sodium | | 326B | 83.6B | 27.4 U | 29.9 U | 36.4 U | 123 B | | Thallium | | 0.88 U | 0.91 U | 0.72 U | 0.68 U | 0.65 U | 0.86 U | | Total Mercury | - | 0.19 | 0.08 U | 0.06 U | 0.06 U | 0.06 U | 0.07 U | | Vanadium | | 17.8 | 12.3B | 14.0 | 6.2B | 10.9B | 9.2B | | Zinc | | 279 | 1880 | 0.09 | 49.0 | 54.7 | 18.3 | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (6 | 00996 | 17100 | 1000 U | 1310 | 19000 | 7380 | | Grain Size (%) | | | | | | | | | Percent Gravel | | | 10 | 9 | 5 | 3 | 3 | | Percent Sand | | 85 | 85 | 85 | 06 | 92 | 87 | | Percent Silt | | 13 | 5 | 10 | z, | | 10 | | Percent Clay | | · | 0 | 0 | 0 | 0 | 0 | | | | | | | | | The state of s | 12/13/2001 Page 56 of 60 SDDDL1SD.DBF - CHSTdtFT.frx Table 2-1 - Sediment Sample Detected Concentrations | | | | | | | Andrews of the state sta | |---|--|--|--------------|--|--
--| | Station ID: | 90080 | 0200 | 02008 | 600SN | US010 | US011 | | Sample ID: | ID: BK-131-SD | BK-134-SD | BK-135-SD | BK-133-SD | BK-139-SD | BK-142-SD | | Sample Date: | ite: 06/25/2001 | 06/25/2001 | 06/25/2001 | 06/25/2001 | 06/25/2001 | 06/26/2001 | | Constituent Depth (feet): | et): 0 in to 3 in | 0 in to 4 in | 0 in to 6 in | 0 in to 8 in | 0 in to 4 in | 2 in to 10 in | | Semi-Volatile Organic Compounds (ug/kg) | kg) | | | | | | | Benzyi Butyl Phthalate | | 130 JQ | 450 U | 220 JQ | | | | Bis(2-ethylhexyl) Phthalate | | 56 JQ | 450 U | 400 N | | | | Pesticides/PCBs (ug/kg) | | | | | Annual Control of the | | | 4,4'-DDE (p,p'-DDE) | 4.0 U | 4.4 U | 4.6 U | 4.10 | 4.2 U | 33 U | | 4,4'-DDT (p,p'-DDT) | 4.0 U | 4.4 U | 4.6 U | 4.10 | 4.2 U | 33 U | | Alpha-chlordane | 2.0 U | 2.3 U | 2.3 U | 2.10 | 2.2 U | U 21 | | Beta-BHC | 2.0 U | 2.3 U | 2.3 U | 2.10 | 2.2 U | U 11 U | | Endrin | 4.0 U | 4,4 U | 4.6 U | 4.10 | 4.2 U | 33 U | | Endrin Aldehyde | 4.0 U | 4.4 U | 4.6 U | 4.10 | 4.2 U | 33 U | | Methoxychlor | 20 U | 23.0 | 23 U | 210 | 22 U | 170 U | | PCB-1254 (Aroclor 1254) | 40 U | 44 U | 46 U | 410 | 45 U | 330 U | | PCB-1260 (Aroclor 1260) | 40 U | 44 U | 46 U | 410 | 45 U | 330 U | | Inorganics (Total) (mg/kg) | m e car ambamatean cura sera an antica a | e estados que trama lacertese es seses essesen la seriem mes el la una ambandante en | | and the second control of | | STATE OF THE | | Aluminum | 4860 | 29300 | 27000 | 16000 | 8660 | 2260 JK | | Antimony | 7.2U | 8.2 N | 8.2 U | 7.0 U | 7.4 U | 34.9 UJK | | Arsenic | 1.3B | 4.5 | 7.0 | 1.58 | 0.51 U | 2.4 UJK | | Barium | 31.1B | 166 | 214 | 197 | 52.3 | 66.5 BJK | | Beryllium | 0.27 U | 0.79U | 0.80 U | 0.59 U | 0.74 U | 0.24 UJK | | Cadmium | 0.05 UJK | 0.28 BJK | 3.3 JK | 0.05 UJK | 0.05 UJK | 1.7 BJK | | Calcium | 3740 JK | 3F 0989 | 1510 JK | 2100 JK | 1720 JK | 88500 JK | | Chromium | 6.1 | 21.5 | 8.6 | 10.3 | 12.3 | 3.0 UJK | | Cobalt | 2.7B | 7.58 | 8.1B | 6.2B | 3.9B | 6.5 UJK | | Copper | 5.1 BJK | 13.9 JK | 9.8 JK | 6.4 JK | 4.6 BJK | 13.0 BJK | | Iron | 7020 | 19200 | 17800 | 13200 | 13200 | 2310 JK | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | Constituent Lead Magnesium | | 90080 | US007 | 800SO | 600SN | US010 | US011 | |------------------------------|---------------|--|--------------|--------------|--------------|--------------|---------------| | Constituent Lead Magnesium | Sample ID: | BK-131-SD | BK-134-SD | BK-135-SD | BK-133-SD | BK-139-SD | BK-142-SD | | Constituent Lead Magnesium | Sample Date: | 06/25/2001 | 06/25/2001 | 06/25/2001 | 06/25/2001 | 06/25/2001 | 06/26/2001 | | Lead | Depth (feet): | 0 in to 3 in | 0 in to 4 in | 0 in to 6 in | 0 in to 8 in | 0 in to 4 in | 2 in to 10 in | | Magnesium | | 8.0 | 19.2 | 139 | 8.4 | 5.4 | 16.1.EX | | | | 1860 | 5190 | 1640 | 2300 | 2750 | 2260 B JK | | Manganese | | 148 | 501 | 2340 | 501 | 194 | 12.0 B.IK | | Nickel | | 8.2B | 15.9 | 10.2B | 10.8 | 8 6 6 | 14.1 BJK | | Potassium | | 209 B | 1210B | 764 B | 885B | 1210B | 398 UJK | | Selenium | | 0.47 U | 0.89B | 0.69 B | 0.96B | 0.73B | 12.1 JK | | Silver | | 0.66 UJL | 0.75 UJL | 0.76 UJL | 0.64 UJL | 1CD 69:0 | 321LIK | | Sodium | | 131B | 419B | 193 B | 140B | 90.9B | 213 B.IK | | Thallium | | 0.71 U | 0.810 | 0.81 U | U 69.0 | 0.74 U | 35111K | | Total Mercury | | 0.06 U | 0.07 U | U 200 | 0.06 U | 0.06 U | 0.30R | | Vanadium | | 10.18 | 27.2 | 25.4 | 15.6 | 14.5 | 51 9 B IK | | Zinc | | 20.0 | 135 | 901 | 80.6 | 32.3 | 42.0 JK | | Conventional Parameters | : | | | | | | | | Total Organic Carbon (mg/kg) | | 5470 | | | | 4710 | 309000 | | Grain Size (%) | | and the second s | | | | | | | Percent Gravel | | 10 | 0 | 0 | 0 | 15 | 0 | | Percent Sand | | 85 | 20 | 75 | 80 | 85 | · c | | Percent Silt | | S | 40 | 20 | 20 | 0 | S | | Percent Clay | | 0 | 10 | S | 0 | 0 | rc. | SDDDL1SD.DBF - CHSTdtFT.frx Page 58 of 60 12/13/2001 Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | US012 | US013 | US014 | US015 | US016 | | |---
--|---------------------------------------|--------------|--------------|--|--|--| | | Sample ID: | BK-140-SD | BK-138-SD | TR-147-SD | TR-145-SD | TR-136-SD | | | ŭ | Sample Date: | 06/26/2001 | 06/26/2001 | 06/27/2001 | 06/27/2001 | 06/27/2001 | | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 4 in | 0 in to 3 in | 0 in to 2 in | 0 in to 5 in | | | Semi-Volatile Organic Compounds (ug/kg) | nds (ug/kg) | | | | | | | | Benzyl Butyl Phthalate | | | | | | | | | Bis(2-ethylhexyl) Phthalate | | | | | | | | | Pesticides/PCBs (ug/kg) | | | | | | | | | 4,4'-DDE (p,p'-DDE) | | 4.10 | 3.8 U | 4.3U | 4.10 | 3.9 U | | | 4,4'-DDT (p,p'-DDT) | | 4.10 | 3.8 U | 4.3 U | 4.10 | 3.9 U | | | Alpha-chlordane | | 2.1 U | 2.0 U | 2.2 U | 2:10 | 2.0 U | | | Beta-BHC | | 2.1 U | 2.0 U | 2.2 U | 2.10 | 2.0 U | : | | Endrin | | 4.10 | 3.8 U | 4.3 U | 4.10 | 3.9 U | | | Endrin Aldehyde | | 4.10 | 3.8 U | 4.3 U | 4.10 | 3.9 U | | | Methoxychlor | | 21 U | 70 C | 22 U | 210 | 20 U | | | PCB-1254 (Aroclor 1254) | | 41 U | 380 | 430 | 41 U | 39 U | | | PCB-1260 (Aroclor 1260) | - | 41 U | 380 | 43 U | 410 | 39 U | and the same of th | | Inorganics (Total) (mg/kg) | CONTRACTOR OF THE SECOND STATE S | e e e e e e e e e e e e e e e e e e e | | | menter de la companya de la company
El | een communication and the second environment of the second environment of the second environment of the second | A service of the confidence | | Aluminum | | 4440 | 10000 | 10500 | 0968 | 10300 | | | Antimony | | 7.3 U | 7.2 U | 28.0 | 2450 | 637 | | | Arsenic | | 1.2B | 0.89B | 862 | 6180 | 2850 | | | Barium | | 26.4B | 18.5B | 52.4B | 55.6 | 59.5 | | | Beryllium | | 0.16 U | 0.19 U | 0.38 U | U 29:0 | 0.63 U | | | Cadmium | | 0.05 UJK | 0.05 UJK | 9.8 JK | 210 JK | 152 JK | | | Calcium | | 2510 JK | 2620 JK | 4890 JK | 14400 JK | 9120 JK | | | Chromium | | 7.3 | 13.2 | 28.8 | 16.9 | 20.9 | | | Cobalt | | 2.5B | 5.9B | 12.8B | 23.0 | 20.1 | | | Copper | | 5.9 BJK | 4.2 BJK | 25.8 JL | 279 JK | 106 JK | | | Iron | : * · · · · · · · · · · · · · · · · · · | 10200 | 22800 | 29400 | 62800 | 63500 | | | | | | | | | | | Table 2-1 - Sediment Sample Detected Concentrations | | Station ID: | US012 | US013 | US014 | US015 | US016 | | |------------------------------|---|--------------|--------------|--------------|--------------|--------------|---| | | Sample ID: | BK-140-SD | BK-138-SD | TR-147-SD | TR-145-SD | TR-136-SD | | | | Sample Date: | 06/26/2001 | 06/26/2001 | 06/27/2001 | 06/27/2001 | 06/27/2001 | | | Constituent | Depth (feet): | 0 in to 1 in | 0 in to 4 in | 0 in to 3 in | 0 in to 2 in | 0 in to 5 in | | | Lead | | 3.3 | 6.4 | 494 | 18300 | 14100 | | | Magnesium | - | 2160 | 4260 | 9140 | 19200 | 12800 | | | Manganese | *************************************** | 206 | 292 | 985 | 3520 | 2300 | | | Nickel | | 8.9B | 17.0 | 21.6 | 23.6 | 23.9 | | | Potassium | | 8 969 | 181 B | 822 B | 1010B | 847 B | | | Selenium | ,, <u>.</u> | 0.48B | 0.57 B | 0.51 U | 0.48 U | 0.45 U | | | Silver | - | 0.67 UJL | 0.66 UJL | 0.80 BJL | 37.4 JL | 24.4 JL | | | Sodium | | 65.3 B | 73.9B | 47.68 | 40.0U | 55.4 B | | | Thallium | • | 0.72 U | 0.71 U | 0.77 U | 0.73 U | 1.4 U | | | Total Mercury | | 0.06 U | 0.06 U | 0.07 U | 0.35 | 0.06 U | | | Vanadium | | 9.4B | 12.0B | 31.5 | 35.4 | 38.7 | - | | Zinc | | 18.3 | 41.2 | 1330 | 23600 | 12300 | | | Conventional Parameters | | | | | | | | | Total Organic Carbon (mg/kg) | (b | 1000 U | 4230 | 8750 | 2770 | 0906 | | | Grain Size (%) | | | | | | | | | Percent Gravel | | 0 | 10 | 5 | 10 | 10 | | | Percent Sand | | 95 | 82 | 8 | 82 | 85 | | | Percent Silt | | TO. | တ | ស | ıc | , ko | | | Percent Clay | | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | SDDDL1SD.DBF - CHSTdtFT.frx A blank cell indicates analysis was not performed or the result was rejected during analysis. 12/13/2001 Page 60 of 60 Table 2-2 - Surface Water Sample Detected Concentrations | Station ID: |): CW001 | CW002 | N/A | UW001 | UW002 | UW003 | |--|---------------
--|--|-------------|-------------|--| | Sample ID: | CR-002-SW | CR-003-SW | CR-001-SW | BK-151-SW | BK-149-SW | BK-154-SW | | Sample Date: | a: 05/14/2001 | 05/15/2001 | 05/14/2001 | 06/27/2001 | 06/28/2001 | 06/28/2001 | | Constituent Depth (feet): |): N/A to N/A | 32 ft to N/A | N/A to N/A | 0 in to N/A | 0 in to N/A | 0 in to N/A | | Volatile Organic Compounds (ug/l) | | | | | | | | Chloroform | 26 | 100 | | | | | | Semi-Volatile Organic Compounds (ug/I) | | | | | | | | Atrazine | 10 R | 10R | | | | | | Inorganics (Total) (ug/l) | | | | | - | | | Aluminum | 168 U | 168 U | | 126 BJK | 27.2 UJL | 27.2 UJL | | Antimony | 3.0 U | 3.0 U | | 32.6 U | 32.6 U | 32.6 U | | Arsenic | 4.0 U | 4.0 U | | 2.2 U | 2.2 U | 2.2 U | | Barium | 31.0B | 31.8B | | 77.4B | 0.72B | 8.9B | | Cadmium | 0.30 U | 0.30 U | | 1.6U | 1.6 U | 1.6 U | | Calcium | 21400 | 21500 | | 83800 | 48.6 U | 12500 | | Copper | 1.4 BJL | 0.97 BJL | | 3.4 U | 3.4 U | 3.4 U | | lion | 54.6 U | 54.60 | | 165 | 14.3 U | 41.2 U | | | | and the second s | A THE TENER CANADAMENT TO THE EXTENSION OF THE STREET T | 1.3UJK | 2.18 | The second secon | | Magnesium | 5330 | 5360 | | 24300 | 33.6 U | 2050 B | | Manganese | 4.3B | 3.6B | | 8.30 | 0.44 U | 1.10 | | Potassium | 1020 BJ | 994BJ | | 1030B | 372 U | 674B | | Selenium | 3.40 | 3.40 | | 4.2B | 2.10 | 2.10 | | Sodium | 4470B | 2600 B | | 2100 B | 119 U | 786 B | | Zinc | 8.7B | 5.9 B | | 116 | 2.1 UJK | 1.9 UJK | | | | | | | | | Table 2-2 - Surface Water Sample Detected Concentrations | | Station ID: | UW004 | UW005 | UW006 | UW007 | | |--|---------------|--|-------------
--|-------------|--| | 9 | Sample ID: | BK-132-SW | BK-143-SW | BK-141-SW | TR-148-SW | | | Sar | Sample Date: | 06/25/2001 | 06/26/2001 | 06/26/2001 | 06/27/2001 | | | Constituent De | Depth (feet): | 0 in to N/A | | | Volatile Organic Compounds (ug/l) | g/l) | | | | | | | Chloroform | | | | | | | | Semi-Volatile Organic Compounds (ug/l) | (l/Bn) spu | The state of s | | | | | | Atrazine | | | | | | | | Inorganics (Total) (ug/I) | | | | | | | | Aluminum | | 2250 JK | 1240 JK | 27.2 UJK | 223 JL | | | Antimony | - | 32.6 U | 32.6 U | 32.6 U | 84.5 | | | Arsenic | | 2.2 U | 2.2 U | 2.2 U | 76.4 | | | Barium | | 22.9 B | 72.0B | 17.3B | 27.7B | | | Cadmium | | 0.70 U | 0.49 U | 0.22 U | 2.6B | | | Calcium | | 11800 | 146000 | 47500 | 37800 | | | Copper | | 3.4 U | 3.4 U | 3.40 | 6.08 | No. of the state o | | Iron | | 1650 | 1240 | 116 | 1340 | | | Lead | | 13.4 JK | 10.6 JK | 1.3 UJK | 41.3 | | | Magnesium | | 2330 B | 15600 | 7120 | 20600 | | | Manganese | | 56.6 | 21.0 | 10.4 B | 38.7 | | | Potassium | | 913B | 1690 B | 1450 B | 1240B | | | Selenium | | 2.1 U | 3.5B | 2.10 | 2.10 | | | Sodium | | 1230 B | 2740B | 2680 B | 2670B | | | Zinc | | 13.3 U | 28.8 | 6.10 | 284 | | | | | | | The state of s | | | SWDDL1SD.DBF - CHSTdtFT.frx 12/13/2001 Page 2 of 2